【題目】已知函數(shù)f(x)= (a∈R).
(1)若不等式f(x)<1的解集為(﹣1,4),求a的值;
(2)設(shè)a≤0,解關(guān)于x的不等式f(x)>0.

【答案】
(1)

解:∵f(x)<1,

<1,∴ <0,

而不等式的解集是(﹣1,4),

故a﹣1=1,即a=2;


(2)

解:①a=0時, >0,解得:x<﹣1,

②﹣3<a<0時, >﹣1,

解得:﹣1<x< ,

③a=﹣3時, >0,不成立,

④a<﹣3時, <﹣1,

,

解得: <a<﹣1.


【解析】(1))由f(x)<1,得到 <0,由不等式的解集是(﹣1,4),得到a﹣1=1,解出a的值即可;(2)通過討論a的范圍,解關(guān)于x的不等式組,解出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體ABCDA1B1C1D1中,E為棱BC的中點(diǎn),點(diǎn)F是棱CD上的動點(diǎn),試確定點(diǎn)F的位置,使得D1E⊥平面AB1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“L函數(shù)”.

1)試判斷函數(shù)是否是“L函數(shù)”;

2)若函數(shù)為“L函數(shù)”,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)L函數(shù),且,求證:對任意,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=AD=1,E為CD中點(diǎn).

(1)求證:C1D∥平面AB1E;
(2)求證:BC1⊥B1E;
(3)若AB= ,求二面角E﹣AB1﹣B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為大力提倡“厲行節(jié)儉,反對浪費(fèi)”,某高中通過隨機(jī)詢問100名性別不同的學(xué)生是否做到“光盤”行動,得到如表所示聯(lián)表及附表:

做不到“光盤”行動

做到“光盤”行動

45

10

30

15

P(K2≥k0

0.10

0.05

0.025

k0

2.706

3.841

5.024

經(jīng)計算:K2= ≈3.03,參考附表,得到的正確結(jié)論是(
A.有95%的把握認(rèn)為“該學(xué)生能否做到光盤行到與性別有關(guān)”
B.有95%的把握認(rèn)為“該學(xué)生能否做到光盤行到與性別無關(guān)”
C.有90%的把握認(rèn)為“該學(xué)生能否做到光盤行到與性別有關(guān)”
D.有90%的把握認(rèn)為“該學(xué)生能否做到光盤行到與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=a2x+ (a,b,c為常數(shù),且a>0,c>0).
(1)當(dāng)a=1,b=0時,求證:|f(x)|≥2c;
(2)當(dāng)b=1時,如果對任意的x>1都有f(x)>a恒成立,求證:a+2c>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017安徽淮南二!侩S著社會發(fā)展,淮北市在一天的上下班時段也出現(xiàn)了堵車嚴(yán)重的現(xiàn)象.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r段(T≥3 ),從淮北市交通指揮中心隨機(jī)選取了一至四馬路之間50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:

(I)據(jù)此直方圖估算交通指數(shù)T∈[4,8)時的中位數(shù)和平均數(shù);

(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個路段至少有2個嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/span>

(III)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴(yán)重?fù)矶聻?0分鐘,求此人用時間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直四棱柱ABCD﹣A1B1C1D1的底面ABCD為菱形,且∠BCD=60°,P為AD1的中點(diǎn),Q為BC的中點(diǎn)

(1)求證:PQ∥平面D1DCC1
(2)求證:DQ⊥平面B1BCC1

查看答案和解析>>

同步練習(xí)冊答案