如圖,橢圓長(zhǎng)軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),
且,.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)記橢圓的上頂點(diǎn)為,直線(xiàn)交橢圓于兩點(diǎn),問(wèn):是否存在直線(xiàn),使點(diǎn)恰為的垂心?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由
(Ⅰ) (Ⅱ)
(1)設(shè)橢圓方程為
由題意又∵即
∴ 故橢圓方程為 …………4分
(2)假設(shè)存在直線(xiàn)交橢圓于兩點(diǎn),且恰為的垂心,則
設(shè),∵,故 ……………6分
于是設(shè)直線(xiàn)為 ,由得
…………8分
∵ 又
得 即
由韋達(dá)定理得
解得或(舍) 經(jīng)檢驗(yàn)符合條件
則直線(xiàn)的方程為:………13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
AF |
FB |
OF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分12分)如圖,橢圓長(zhǎng)軸端點(diǎn)為,為橢圓中心, 為橢圓的右焦點(diǎn),且,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)記橢圓的上頂點(diǎn)為,直線(xiàn)交橢圓于兩點(diǎn),問(wèn):是否存在直線(xiàn),使點(diǎn)恰為的垂心?
若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省濟(jì)寧市高二12月質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)
如圖,橢圓長(zhǎng)軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),
且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為,直線(xiàn)交橢圓于兩點(diǎn),問(wèn):是否存在直線(xiàn),使點(diǎn)恰為的垂心?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市高三五校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿(mǎn)分15分)
如圖,橢圓長(zhǎng)軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),且,;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為,直線(xiàn)交橢圓于兩點(diǎn),問(wèn):是否存在直線(xiàn),使點(diǎn)恰為的垂心?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com