【題目】按下列要求分配6本不同的書,各有多少種不同的分配方式?

(1)分成三份,1份1本,1份2本,1份3本;

(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;

(3)平均分成三份,每份2本;

(4)平均分配給甲、乙、丙三人,每人2本;

(5)分成三份,1份4本,另外兩份每份1本;

(6)甲、乙、丙三人中,一人得4本,另外兩人每人得1本;

【答案】160;(2360;(315;(490;(515;(690.

【解析】

1)先從6本書中選1本,再?gòu)氖S?/span>5本書中選擇2本,剩余的就是三本書。

2)由(1)可知,將分成的三份分別給與甲乙丙即可。

3)依次從6本書中選擇2本,從剩余4本書中選擇2本,剩余2本,即可分成每份都有2本的三份,但在分配中,每種情況都出現(xiàn)了次重復(fù),所以要除以重復(fù)的遍數(shù)即可得分配方法的種類數(shù)。

4)根據(jù)(3)可知,將三種分配方式分別分給甲乙丙三人即可。

5)先從6本書選出4本書,剩余的2本書中選出1本,在選擇過(guò)程中,后面2本選擇1本時(shí)發(fā)生重復(fù),所以要除以.

6)根據(jù)(5),將三種情況分別分配給甲乙丙三個(gè)人即可。

1)先從6本書中選1本,有種分配方法;

再?gòu)氖S?/span>5本書中選擇2本,有種分配方法

剩余的就是2本書,有種分配方法

所以總共有種分配方法。

2)由(1)可知分組后共有60種方法,分別分給甲乙丙后的方法有

種。

3)從6本書中選擇2本書,有種分配方法;

再?gòu)氖S?/span>4本書中選擇2本書,有種分配方法;

剩余的就是2本書,有種分配方法;

所以有種分配方法。

但是,該過(guò)程有重復(fù)。假如6本書分別為AB、CD、EF,若三個(gè)步驟分別選出的是。則所有情況為,,,。

所以分配方式共有

(4)由(3)可知,將三種分配方式分別分給甲乙丙三人,則分配方法為

(5)從6本書中選4本書的方法有

從剩余2本書中選1本書有

因?yàn)樵谧詈髢杀緯x擇中發(fā)生重復(fù)了

所以總共有

(6)由(5)可知,將三種分配情況分別分給甲乙丙三人即可,即

種。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,向量,設(shè)函數(shù)的圖象關(guān)于直線對(duì)稱,其中常數(shù).

1)若,求的值域;

2)將函數(shù)的圖象向左平移個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)的圖象,用五點(diǎn)法作出函數(shù)在區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為,點(diǎn)在橢圓C上,直線與橢圓C交于EF兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N

求橢圓C的方程;

x軸上是否存在點(diǎn)P,使得無(wú)論非零實(shí)數(shù)k怎樣變化,總有為直角?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的導(dǎo)函數(shù)零點(diǎn)的個(gè)數(shù);

(2)若函數(shù)的最小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)求曲線與曲線交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的通項(xiàng)公式為,數(shù)列的通項(xiàng)公式為,設(shè),若在數(shù)列中,對(duì)任意恒成立,則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線Cρsin2θ2acos θ(a>0),過(guò)點(diǎn)P(2,-4)的直線l (t為參數(shù))與曲線C相交于MN兩點(diǎn).

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)|PM||MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需要,兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為( 。

原料限額

(噸)

3

2

10

(噸)

1

2

6

A. 10萬(wàn)元B. 12萬(wàn)元C. 13萬(wàn)元D. 14萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩(shī)詞的熱潮,節(jié)目組為熱心觀眾給以獎(jiǎng)勵(lì),要從名觀眾中抽取名幸運(yùn)觀眾.先用簡(jiǎn)單隨機(jī)抽樣從人中剔除人,剩下的人再按系統(tǒng)抽樣方法抽取人,則在人中,每個(gè)人被抽取的可能性( )

A. 均不相等B. 都相等,且為

C. 不全相等D. 都相等,且為

查看答案和解析>>

同步練習(xí)冊(cè)答案