精英家教網 > 高中數學 > 題目詳情

【題目】某金匠以黃金為原材料加工一種飾品,經多年的數據統(tǒng)計得知,該金匠平均每加5 個飾品中有4個成品和1個廢品,每個成品可獲利3萬元,每個廢品損失1萬元,假設該金匠加工每件飾品互不影響,以頻率估計概率.

(1)若金金匠加工4個飾品,求其中廢品的數量不超過1的概率;

(2)若該金匠加工了 3個飾品,求他所獲利潤的數學期望.

(兩小問的計算結果都用分數表示)

【答案】(1);(2)萬元.

【解析】【試題分析】(1)依據題設運用概率公式分析探求;(2)運用數學期望的計算公式求解:

(Ⅰ)依題意,該金匠加工飾品的廢品率為,

他加工的4個飾品中,廢品的數量不超過1的概率為

(Ⅱ)設為加工出的成品數,則可能的取值為0,1,2,3,

,,,

,

故該金匠所獲利潤的數學期望是萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數的最小正周期為.

1)求的值;

2)將函數的圖像向左平移個單位,再將得到的圖像上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數的圖像,求函數的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設小正方形邊長為x厘米,矩形紙板的兩邊ABBC的長分別為a厘米和b厘米,其中ab

(1)當a=90時,求紙盒側面積的最大值;

(2)試確定ab,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是等差數列,滿足,數列滿足,且為等比數列.

(1)求數列的通項公式;

(2)求數列的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點的動直線與拋物線相交于兩點.當直線的斜率是時,.

(1)求拋物線的方程;

(2)設線段的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓上的點到兩個焦點的距離之和為,短軸長為,直線與橢圓交于兩點.

1求橢圓的方程;

2若直線與圓相切,探究是否為定值,如果是定值,請求出該定值;如果不是定值,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=sin(ωx+φ)( )的最小正周期是π,若其圖象向右平移 個單位后得到的函數為奇函數,則函數f(x)的圖象(
A.關于點 對稱
B.關于點 對稱
C.關于直線 對稱
D.關于直線 對稱

查看答案和解析>>

同步練習冊答案