【題目】設(shè)α∈(0, ),滿足 sinα+cosα=
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.

【答案】
(1)解:∵α∈(0, ),滿足 sinα+cosα= =2sin(α+ ),∴sin(α+ )=

∴cos(α+ )= =


(2)解:∵cos(2α+ )=2 ﹣1= ,sin(2α+ )=2sin(α+ ) cos(α+ )=2 = ,

∴cos(2α+ π)=cos[(2α+ )+ ]=cos(2α+ )cos ﹣sin(2α+ )sin = =


【解析】(1)利用兩角和的正弦公式求得 sin(α+ )的值,再利用同角三角函數(shù)的基本關(guān)系求得 cos(α+ ) 的值.(2)利用二倍角公式求得 cos(2α+ )的值,可得sin(2α+ )的值,從而求得cos(2α+ π)=cos[(2α+ )+ ]的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列數(shù)列中,既是遞增數(shù)列又是無窮數(shù)列的是(
A.1, , ,…
B.﹣1,﹣2,﹣3,﹣4,…
C.﹣1,﹣ ,﹣ ,﹣ ,…
D.1, ,…,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PC⊥平面ABC,∠ACB=45°,BC=2 ,AB=2.
(1)求AC的長;
(2)若PC= ,點(diǎn)M在側(cè)棱PB上,且 = ,當(dāng)λ為何值時,二面角B﹣AC﹣M的大小為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且asinAsinB+bcos2A= a.
(1)求
(2)若c2=a2+ b2 , 求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且a2+c2=b2﹣ac.
(1)求B的大小;
(2)設(shè)∠BAC的平分線AD交BC于D,AD=2 ,BD=1,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是奇函數(shù),且對于任意x∈R滿足f(2﹣x)=f(x),當(dāng)0<x≤1時,f(x)=lnx+2,則函數(shù)y=f(x)在(﹣2,4]上的零點(diǎn)個數(shù)是(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王為了鍛煉身體,每天堅持“健步走”,并用計步器進(jìn)行統(tǒng)計.小王最近8天“健步走”步數(shù)的頻數(shù)分布直方圖(圖1)及相應(yīng)的消耗能量數(shù)據(jù)表(表1)如下:

健步走步數(shù)(前步)

16

17

18

19

消耗能量(卡路里)

400

440

480

520

(Ⅰ)求小王這8天“健步走”步數(shù)的平均數(shù);
(Ⅱ)從步數(shù)為17千步,18千步,19千步的幾天中任選2天,求小王這2天通過“健步走”消耗的能量和不小于1000卡路里的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,已知對任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于(
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考查培育的某種植物的生長情況,從試驗(yàn)田中隨機(jī)抽取100柱該植物進(jìn)行檢測,得到該植物高度的頻數(shù)分布表如下:

組序

高度區(qū)間

頻數(shù)

頻率

1

[230,235)

14

0.14

2

[235,240)

0.26

3

[240,245)

0.20

4

[245,250)

30

5

[250,255)

10

合計

100

1.00

(Ⅰ)寫出表中①②③④處的數(shù)據(jù);
(Ⅱ)用分層抽樣法從第3、4、5組中抽取一個容量為6的樣本,則各組應(yīng)分別抽取多少個個體?
(Ⅲ)在(Ⅱ)的前提下,從抽出的容量為6的樣本中隨機(jī)選取兩個個體進(jìn)行進(jìn)一步分析,求這兩個個體中至少有一個來自第3組的概率.

查看答案和解析>>

同步練習(xí)冊答案