已知拋物線C:y2=8x,直線y=2x+b與拋物線C相交于A,B兩點,且|AB|=
15
,求b的值.
分析:把拋物線方程與直線方程聯(lián)立,化為關(guān)于x的一元二次方程后利用根與系數(shù)關(guān)系求出A,B兩點的橫坐標(biāo)的和與積,然后利用弦長公式列式求解b的值.
解答:解:將直線與拋物線方程聯(lián)立,得
y2=8x
y=2x+b
,整理得4x2+(4b-8)x+b2=0.
由△=(4b-8)2-4×4b2=-64b+64>0,得
b<1.
設(shè)A(x1,y1),B(x2,y2),
x1+x2=-
4b-8
4
,x1x2=
b2
4

|AB|=
1+22
|x1-x2|
=
5
(x1+x2)2-4x1x2

=
5
(-
4b-8
4
)2-4•
b2
4
=
5(4-4b)
=
15

解得,b=
1
4
<1
點評:本題考查了直線與圓錐曲線的關(guān)系,訓(xùn)練了利用弦長公式求線段的長度,該題需要注意的是求得的b的值應(yīng)滿足判別式大于0,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點. A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標(biāo)原點).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標(biāo)原點.
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點M,不論直線l繞點M如何轉(zhuǎn)動,使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊答案