設橢圓+=1(a>b>0)的左,右焦點分別為F1,F2,點P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設直線PF2與橢圓相交于A,B兩點.若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點,且|MN|=|AB|,求橢圓的方程.
(1) (2) +=1
解析解:(1)設F1(-c,0),F2(c,0)(c>0),
因為|PF2|=|F1F2|,
所以=2c,
整理得2()2+-1=0,
得=-1(舍去),或=,
所以e=.
(2)由(1)知a=2c,b=c,
可得橢圓方程為3x2+4y2=12c2,
直線PF2的方程為y=(x-c).
A、B兩點的坐標滿足方程組
消去y并整理,得5x2-8cx=0,
解得x1=0,x2=c.
得方程組的解
不妨設A(c,c),B(0,-c),
所以|AB|==c.
于是|MN|=|AB|=2c.
圓心(-1,)到直線PF2的距離
d==.
因為d2+=42,
所以(2+c)2+c2=16.
整理得7c2+12c-52=0,
解得c=-(舍去)或c=2.
所以橢圓方程為+=1.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率為,且過點P,A為上頂點,F(xiàn)為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P為圓A:上的動點,點.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當點P在第一象限,且時,求點M的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由.
(3)若點M的橫坐標為,直線l:y=kx+與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當≤k≤2時,|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓C: +=1(a>b>0)的離心率e=,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交x軸于點N,直線AD交BP于點M,設BP的斜率為k,MN的斜率為m.證明2m-k為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知常數(shù),向量,經(jīng)過定點以為方向向量的直線與經(jīng)過定點以為方向向量的直線相交于,其中,
(1)求點的軌跡的方程;(2)若,過的直線交曲線于兩點,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C的頂點為O(0,0),焦點為F(0,1).
(1)求拋物線C的方程;
(2)過點F作直線交拋物線C于A,B兩點,若直線AO,BO分別交直線l:y=x-2于M,N兩點,求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)過點A(1,-2).
(1)求拋物線C的方程,并求其準線方程.
(2)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線C的一個焦點是F1(一3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線與雙曲線C相交于兩個不同的點M, N,且線段MN的
垂直平分線與兩坐標軸圍成的三角形的面積為,求k的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com