已知函數(shù)f(x)=-xm,且f(4)=-.
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明

(1)∵f(4)=-,
∴-4m=-,∴m=1.
(2)f(x)=-x在(0,+∞)上單調(diào)遞減,證明如下:
任取0<x1<x2,
則f(x1)-f(x2)
=(-x1)-(-x2)
=(x2-x1)(+1).
∵0<x1<x2,∴x2-x1>0,+1>0.
∴f(x1)-f(x2)>0,
∴f(x1)>f(x2),
即f(x)=-x在(0,+∞)上單調(diào)遞減.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)判斷y=1-2x3在(-)上的單調(diào)性,并用定義證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),若函數(shù)在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)是定義在R上的奇函數(shù),且對任意實(shí)數(shù)x恒滿足f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù).
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式.
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2011)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f滿足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,求f(72)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

f (x)是偶函數(shù),且在(0,+∞)上是增函數(shù),若x∈[,1]時(shí),不等式f (ax+1)≤f (x-2)恒成立,則求實(shí)數(shù)a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(I)a=2時(shí),求的公共點(diǎn)個(gè)數(shù);
(II)a為何值時(shí),的公共點(diǎn)個(gè)數(shù)恰為兩個(gè)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)的圖象關(guān)于原點(diǎn)對稱,且
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)解不等式;
(Ⅲ)若上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知

查看答案和解析>>

同步練習(xí)冊答案