已知
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(3,2,λ),若
a
b
、
c
三向量共面,則實數(shù)λ等于( 。
A、2B、3C、4D、5
分析:由于
a
b
不共線,且
a
、
b
、
c
三向量共面,利用平面向量基本定理可知:存在實數(shù)λ1,λ2使得
c
=λ1
a
+λ2
b
.解出即可.
解答:解:∵
a
b
不共線,
∴可取作此平面的一個基向量.
a
、
b
、
c
三向量共面,∴存在實數(shù)λ1,λ2使得
c
=λ1
a
+λ2
b

3=2λ1-λ2
2=-λ1+4λ2
λ=3λ1-2λ2
,
解得
λ1=2
λ2=1
λ=4

故選:C.
點評:本題考查了空間向量基本定理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是( 。
A、A,B,C三點可以構成直角三角形B、A,B,C三點可以構成銳角三角形C、A,B,C三點可以構成鈍角三角形D、A,B,C三點不能構成任何三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(-2,1+
3
),B(2,1-
3
),P(-1,1),若直線l過點P且與線段AB有公共點,則直線l的傾斜角的范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,1),
b
=(0,-1),
c
=
a
+k
b
,
d
=
a
-
b
,若
c
d
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,1,3),
b
=(-4,5,x),若
a
b
.則x=
 

查看答案和解析>>

同步練習冊答案