設(shè)偶函數(shù)f(x)的定義域?yàn)镽,當(dāng)x時(shí)f(x)是增函數(shù),則f(-2),f(),f(-3)的大小關(guān)系是:(     )
A.f()>f(-3)>f(-2)B.f()>f(-2)>f(-3)
C.f()<f(-3)<f(-2)D.f()<f(-2)<f(-3)
A

試題分析:∵函數(shù)f(x)是在[0,+∞)上單調(diào)遞增的偶函數(shù),∴ f(-2)=f(2)<f(3)=f(-3)< f(),故選A
點(diǎn)評(píng):對(duì)于抽象函數(shù)值比較大小問題,往往利用奇偶性把自變量轉(zhuǎn)化為同一個(gè)單調(diào)區(qū)間上處理,解題的關(guān)鍵是判斷抽象函數(shù)的單調(diào)性
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上的奇函數(shù),f(2)=0,當(dāng)x>0時(shí),有成立,則不等式的解集是(      )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),則滿足不等式的實(shí)數(shù)x的取值范圍是__________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法中
①  若定義在R上的函數(shù)滿足,則6為函數(shù)的周期;
② 若對(duì)于任意,不等式恒成立,則;
③ 定義:“若函數(shù)對(duì)于任意R,都存在正常數(shù),使恒成立,則稱函數(shù)為有界泛函.”由該定義可知,函數(shù)為有界泛函;
④對(duì)于函數(shù) 設(shè),,…,),令集合,則集合為空集.正確的個(gè)數(shù)為
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=|lgx|.若0<a<b,且f(a)=f(b),則a+2b的取值范圍是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的值域是       ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,
① 方程有實(shí)數(shù)根;② 函數(shù)的導(dǎo)數(shù)滿足
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003322633315.png" style="vertical-align:middle;" />,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,,當(dāng),且時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則函數(shù)的解集是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知函數(shù)
(1) 求函數(shù)的極值;
(2)求證:當(dāng)時(shí),
(3)如果,且,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案