已知橢圓C:()的短軸長(zhǎng)為2,離心率為
(1)求橢圓C的方程
(2)若過(guò)點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)G、H,設(shè)P為橢圓C上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?

(1);(2)

解析試題分析:(1)由題意知,所以,由此能求出橢圓C的方程;(2設(shè)直線方程為,聯(lián)立直線方程與橢圓方程,再由根的判別式和嘏達(dá)定理進(jìn)行求解.
試題解析:(1)
(2)設(shè)直線,聯(lián)立橢圓,,
條件轉(zhuǎn)換一下一下就是,根據(jù)弦長(zhǎng)公式,得到
然后把把P點(diǎn)的橫縱坐標(biāo)用表示出來(lái),設(shè),其中要把分別用直線代換,最后還要根據(jù)根系關(guān)系把消成,得,
然后代入橢圓,得到關(guān)系式,
所以,根據(jù)利用已經(jīng)解的范圍得到
考點(diǎn):1、橢圓方程及幾何意義;2、直線與圓錐曲線的綜合問(wèn)題;3、平面向量的坐標(biāo)運(yùn)算;4、平面向量的模.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的左、右焦點(diǎn)分別為,離心率,連接橢圓的四個(gè)頂點(diǎn)所得四邊形的面積為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)是直線上的不同兩點(diǎn),若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),圓是以為圓心,半徑為的圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑所在的直線交于點(diǎn).
(1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(2)已知,是曲線上的兩點(diǎn),若曲線上存在點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)為
(1)求橢圓的方程;
(2)若直線軸交于點(diǎn),與橢圓交于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.

(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)作橢圓的切線交“準(zhǔn)圓”于點(diǎn).
(。┊(dāng)點(diǎn)為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時(shí),求直線的方程并證明;
(ⅱ)求證:線段的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)雙曲線C:(a>0,b>0)的一個(gè)焦點(diǎn)坐標(biāo)為(,0),離心率, A、B是雙曲線上的兩點(diǎn),AB的中點(diǎn)M(1,2).
(1)求雙曲線C的方程;
(2)求直線AB方程;
(3)如果線段AB的垂直平分線與雙曲線交于C、D兩點(diǎn),那么A、B、C、D四點(diǎn)是否共圓?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線
(1)若圓心在拋物線上的動(dòng)圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經(jīng)過(guò)的定點(diǎn)坐標(biāo);
(2)拋物線的焦點(diǎn)為,若過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn),若,求直線的斜率;
(3)若過(guò)正半軸上點(diǎn)的直線與該拋物線交于兩點(diǎn),為拋物線上異于的任意一點(diǎn),記連線的斜率為試求滿足成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F的坐標(biāo)為(1,0).
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)M、N是拋物線C的準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且它們的縱坐標(biāo)之積為-4,直線MO、NO與拋物線的交點(diǎn)分別為點(diǎn)A、B,求證:動(dòng)直線AB恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

雙曲線C與橢圓=1有相同的焦點(diǎn),直線y=x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案