【題目】某企業(yè)生產(chǎn)的新產(chǎn)品必須先靠廣告打開銷路,該產(chǎn)品廣告效應(yīng)(單位:元)是產(chǎn)品的銷售額與廣告費(fèi)(單位:元)之間的差,如果銷售額與廣告費(fèi)的算術(shù)平方根成正比,根據(jù)對(duì)市場(chǎng)的抽樣調(diào)查,每付出100元的廣告費(fèi),所得銷售額是1000元.
(Ⅰ)求出廣告效應(yīng)與廣告費(fèi)之間的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)投入多少?gòu)V告費(fèi)才能獲得最大的廣告效應(yīng)?是不是廣告費(fèi)投入越多越好?
【答案】(I);(II)該企業(yè)投入2500元廣告費(fèi)時(shí)能獲得最大的廣告效應(yīng),當(dāng)時(shí),時(shí),逐漸減小,并不是廣告費(fèi)投入越多越好.
【解析】
試題分析:(I)根據(jù)題意寫出函數(shù)的解析式并寫出定義域;(II)用換元法將函數(shù)關(guān)系式轉(zhuǎn)化為二次函數(shù)模型,求出能獲得的最大廣告效應(yīng)。
試題解析:(Ⅰ)設(shè)銷售額為元,由題意知又當(dāng)時(shí),,
,解得.,廣告效應(yīng)與廣告費(fèi)之間的函數(shù)關(guān)系為:
(Ⅱ)令則時(shí),即時(shí),有最大值2500.該企業(yè)投入2500元廣告費(fèi)時(shí)能獲得最大的廣告效應(yīng).當(dāng)時(shí),時(shí),逐漸減小,并不是廣告費(fèi)投入越多越好.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖?( )
①各棱長(zhǎng)相等,同一頂點(diǎn)上的任意兩條棱的夾角都相等;
②各個(gè)面都是全等的正三角形,相鄰兩個(gè)面所成的二面角都相等;
③各個(gè)面都是全等的正三角形,同一頂點(diǎn)上的任意兩條棱的夾角都相等.
A. ① B. ③ C. ①② D. .①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)定義在區(qū)間內(nèi),對(duì)于任意的,有,且當(dāng)時(shí),.
(1)驗(yàn)證函數(shù)是否滿足這些條件;
(2)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(3)若,求方程的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是一個(gè)2×2列聯(lián)表,則表中a、b的值分別為 ( )
y1 | y2 | 合計(jì) | |
x1 | a | 21 | 73 |
x2 | 2 | 25 | 27 |
合計(jì) | b | 46 | 100 |
A. 94、96 B. 52、50
C. 52、54 D. 54、52
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)幾何體的三視圖如圖所示.
(1)求此幾何體的表面積;
(2)如果點(diǎn)在正視圖中所示位置:為所在線段中點(diǎn),為頂點(diǎn),求在幾何體表面上,從點(diǎn)到點(diǎn)的最短路徑的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,G為ABC的重心,延長(zhǎng)線段AG交BC于F,B1F交BC1于E.
(1)求證:GE∥平面AA1B1B;
(2)平面AFB1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓的右焦點(diǎn)為,離心率,過(guò)點(diǎn)且垂直于軸的直線被橢圓截得的弦長(zhǎng)為1.
(Ⅰ)求橢圓的方程;
(Ⅱ)記橢圓的上,下頂點(diǎn)分別為A,B,設(shè)過(guò)點(diǎn)的直線與橢圓分別交于點(diǎn),求證:直線必定過(guò)一定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com