【題目】如圖,在直角梯形,,,,點是的中點,現(xiàn)沿將平面折起,設(shè).
(1)當(dāng)為直角時,求直線與平面所成角的大。
(2)當(dāng)為多少時,三棱錐的體積為;
(3)在(2)的條件下,求此時二面角的大小.
【答案】(1);(2)或;(3)或
【解析】
(1)先證明直線與平面所成角為,再在直角三角形中求解正切值即可.
(2)根據(jù)體積求出到平面的距離.再求解即可.
(3)取中點,證明二面角為,再求解的余弦值即可.
(1) 當(dāng)為直角時,因為點是的中點,,故四邊形為矩形.
故,又,,故,又,
故平面.故直線與平面所成角為.
又.故.
即直線與平面所成角的大小為.
(2)設(shè)到平面的距離為.因為,.
故平面.故到平面的高線在平面中.
又.故.
故,又.故或.
(3) 取中點,連接.因為,故.
又.故,又.故二面角為.
由(1),當(dāng)時,.此時
.故.
故二面角為.
當(dāng)時,.此時
.故.
故二面角為.
綜上二面角為或
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率;先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0、1、2、3表示沒有擊中目標(biāo), 4、5、6、7、8、9表示擊中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),根據(jù)以下數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為( )
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
A.0.4B.0.45C.0.5D.0.55
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,,,F分別在線段BC和AD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF.
Ⅰ求證:平面MFD;
Ⅱ若,求證:;
Ⅲ求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(一),在直角梯形ABCP中,CP∥AB,CP⊥BC,AB=BC=CP,D是CP的中點,將△PAD沿AD折起,使點P到達(dá)點P′的位置得到圖(二),點M為棱P′C上的動點.
(1)當(dāng)M在何處時,平面ADM⊥平面P′BC,并證明;
(2)若AB=2,∠P′DC=135°,證明:點C到平面P′AD的距離等于點P′到平面ABCD的距離,并求出該距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,分別為其左、右焦點,過的直線與此橢圓相交于兩點,且的周長為8,橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標(biāo)系中,已知點與點,過的動直線(不與軸平行)與橢圓相交于兩點,點是點關(guān)于軸的對稱點.求證:
(i)三點共線.
(ii).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓經(jīng)過定點,且與直線相切,設(shè)動圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)過點的直線,分別與曲線交于,兩點,直線,的斜率存在,且傾斜角互補,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱錐放置在以為直徑的半圓面上,為圓心,為圓弧上的一點,為線段上的一點,且,,.
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)二面角的平面角為時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓:,點是圓內(nèi)一個定點,點是圓上任意一點,線段的垂直平分線和半徑相交于點.當(dāng)點在圓上運動時,點的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)過點的直線與曲線相交于兩點(點在兩點之間).是否存在直線使得?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com