【題目】已知函數(shù) ( x R ,且 e 為自然對數(shù)的底數(shù)).
⑴ 判斷函數(shù) f x 的單調(diào)性與奇偶性;
⑵是否存在實(shí)數(shù) t ,使不等式對一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
【答案】(1)證明見解析;(2)存在,
【解析】
(1)利用函數(shù)奇偶性和單調(diào)性的定義證明函數(shù)的奇偶性和單調(diào)性.(2)由函數(shù)的奇偶性和單調(diào)性得到對一切的x∈R都成立,再利用判別式得解.
函數(shù)定義域?yàn)?/span>R,關(guān)于原點(diǎn)對稱, ,
則,則f(x)是奇函數(shù).
以下證明f(x)在R上單調(diào)遞增:
任取x1,x2∈R,令x1<x2 ,
所以函數(shù)單調(diào)遞增.
(2)存在,證明: 等價(jià)成,則對一切的x∈R都成立,則可得。
所以當(dāng)時(shí),使不等式對一切的 x R 都成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個(gè)年齡段:21~30,31~40(單位:歲),統(tǒng)計(jì)這兩個(gè)年齡段選手答對歌曲名稱與否的人數(shù)如圖所示.
(參考公式:K2= ,其中n=a+b+c+d)
(1)寫出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為答對歌曲名稱與否和年齡有關(guān),說明你的理由.(下面的臨界值表供參考)
P(K2≥k0) | 0.1 | 0.05 | 0.01 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(2)在統(tǒng)計(jì)過的參考選手中按年齡段分層選取9名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在21~30歲年齡段的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)集由實(shí)數(shù)構(gòu)成,且滿足:若(且),則.
(1)若,試證明中還有另外兩個(gè)元素;
(2)集合是否為雙元素集合,并說明理由;
(3)若中元素個(gè)數(shù)不超過8個(gè),所有元素的和為,且中有一個(gè)元素的平方等于所有元素的積,求集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足xf′(x)﹣f(x)>0,當(dāng)0<m<n<1時(shí),下面選項(xiàng)中最大的一項(xiàng)是( )
A.
B.logmn?f(lognm)
C.
D.lognm?f(logmn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中且.
(Ⅰ)當(dāng)時(shí),求函數(shù)的值域;
(Ⅱ)當(dāng)在區(qū)間上為增函數(shù)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃投資A、B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資量成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤與投資量的算術(shù)平方根成正比例,其關(guān)系如圖2(注:利潤與投資量的單位:萬元).
(1)分別將A、B兩產(chǎn)品的利潤表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有10萬元資金,并全部投入A、B兩種產(chǎn)品中,問:怎樣分配這10萬元投資,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了對教師教學(xué)水平和教師管理水平進(jìn)行評價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對教師教學(xué)水平給出好評的學(xué)生人數(shù)為總數(shù)的60%,對教師管理水平給出好評的學(xué)生人數(shù)為總數(shù)的75%,其中對教師教學(xué)水平和教師管理水平都給出好評的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評價(jià)的2×2列聯(lián)表:
對教師管理水平好評 | 對教師管理水平不滿意 | 合計(jì) | |
對教師教學(xué)水平好評 | |||
對教師教學(xué)水平不滿意 | |||
合計(jì) |
問:是否可以在犯錯(cuò)誤概率不超過0.1%的前提下,認(rèn)為教師教學(xué)水平好評與教師管理水平好評有關(guān)、
(2)若將頻率視為概率,有4人參與了此次評價(jià),設(shè)對教師教學(xué)水平和教師管理水平全好評的人數(shù)為隨機(jī)變量X;
①求對教師教學(xué)水平和教師管理水平全好評的人數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價(jià)格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:
參考公式: , .
根據(jù)參考公式,以求得
(1)求關(guān)于的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時(shí),年利潤取到最大值?(保留兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體校為了備戰(zhàn)明年四月份省劃艇單人雙槳比賽,對本校甲、乙兩名劃艇運(yùn)動(dòng)員在相同條件下進(jìn)行了6次測試,測得他們劃艇最大速度單位:數(shù)據(jù)如下:
甲:27,38,30,37,35,31;
乙:33,29,38,34,28,36.
試用莖葉圖表示甲、乙兩名運(yùn)動(dòng)員測試的成績;
根據(jù)測試的成績,你認(rèn)為派哪名運(yùn)動(dòng)員參加明年四月份的省劃艇單人雙槳比賽比較合適?并說明你的理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com