【題目】在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點,求角α的大小.

【答案】解:(Ⅰ)當(dāng) 時,直線l的普通方程為x=﹣1;
當(dāng) 時,直線l的普通方程為y=(tanα)(x+1).…(2分)
由ρ=2cosθ,得ρ2=2ρcosθ,
所以x2+y2=2x,即為曲線C的直角坐標(biāo)方程.…(4分)
(Ⅱ)把x=﹣1+tcosα,y=tsinα代入x2+y2=2x,整理得t2﹣4tcosα+3=0.當(dāng)α= 時,方程化為:t2+3=0,方程不成立,當(dāng) 時,由△=16cos2α﹣12=0,得 ,所以
故直線l傾斜角α為
【解析】(Ⅰ)通過當(dāng) 時,當(dāng) 時,分別求出直線l的普通方程.由ρ=2cosθ,得ρ2=2ρcosθ,然后求解曲線C的直角坐標(biāo)方程.(Ⅱ)把x=﹣1+tcosα,y=tsinα代入x2+y2=2x,利用△=0,求解直線l傾斜角α.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點為坐標(biāo)原點,極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)和直線l的極坐標(biāo)方程;
(2)若直線l與圓C只有一個公共點,且a<1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中

,求函數(shù)在區(qū)間上的取值范圍;

,且對任意的,都有,求實數(shù)a的取值范圍.

若對任意的,,都有,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點,求角α的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點.

(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點M的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表數(shù)據(jù)是水的溫度x(℃)對黃酮延長性y(%)效應(yīng)的試驗結(jié)果,y是以延長度計算的.

x/℃

300

400

500

600

700

800

y/%

40

50

55

60

67

70

(1)畫出散點圖;

(2)指出x,y是否線性相關(guān),若線性相關(guān),求y關(guān)于x的回歸方程;

(3)估計水的溫度是1000 ℃時,黃酮延長性的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:

連續(xù)劇播放時長(分鐘)

廣告播放時長(分鐘)

收視人次(萬)

70

5

60

60

5

25

已知電視臺每周安排的甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).(13分)
(I)用x,y列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(II)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在上學(xué)期依次舉行了“法律、環(huán)保、交通”三次知識競賽活動,要求每位同學(xué)至少參加一次活動.該高校2014級某班50名學(xué)生在上學(xué)期參加該項活動的次數(shù)統(tǒng)計如圖所示.

(1)從該班中任意選兩名學(xué)生,求他們參加活動次數(shù)不相等的概率.
(2)從該班中任意選兩名學(xué)生,用ξ表示這兩人參加活動次數(shù)之差的絕對值,求隨機變量ξ的分布列及數(shù)學(xué)期望Eξ.
(3)從該班中任意選兩名學(xué)生,用η表示這兩人參加活動次數(shù)之和,記“函數(shù)f(x)=x2﹣ηx﹣1在區(qū)間(3,5)上有且只有一個零點”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,以長方體的八個頂點中的兩點為起點和終點的向量中.

(1)單位向量共有多少個?

(2)試寫出模為的所有向量.

(3)試寫出與相等的所有向量.

(4)試寫出的相反向量.

查看答案和解析>>

同步練習(xí)冊答案