精英家教網 > 高中數學 > 題目詳情

【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點.

(Ⅰ)求證:PC∥平面EBD;

(Ⅱ)求證:平面PBC⊥平面PCD.

【答案】(Ⅰ)見解析 (Ⅱ)見解析

【解析】試題分析:1)連,與交于,利用三角形的中位線,可得線線平行,從而可得線面平行;
2)證明,即可證得平面平面

試題解析:(Ⅰ)連接AC交BD與O,連接EO,

∵E、O分別為PA、AC的中點,

∴EO∥PC,

∵PC平面EBD,EO平面EBD

∴PC∥平面EBD

(Ⅱ)∵PD⊥平面ABCD, BC平面ABCD,

∴PD⊥BC,∵ABCD為正方形,∴BC⊥CD,

∵PD∩CD=D, PD、CD平面PCD

∴BC⊥平面PCD,又∵BC平面PBC,

∴平面PBC⊥平面PCD.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數,

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)當時,討論函數圖像的交點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)|2xa||2x1|(aR).

(1)a=-1時,求f(x)2的解集;

(2)f(x)|2x1|的解集包含集合,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4cosθ-2sinθ.

(Ⅰ)求C的參數方程;

(Ⅱ)若點A在圓C上,點B(3,0),求AB中點P到原點O的距離平方的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,且對任意正整數,都有成立.記

求數列的通項公式;

(Ⅱ)設,數列的前項和為,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x-1|.

(Ⅰ)解不等式f(x)+f(x+4)≥8;

(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f().

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是函數在區(qū)間上的圖象,為了得到這個函數的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

B. 向左平移至個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線yx+ln x在點(1,1)處的切線與曲線yax2+(a+2)x+1相切,則a________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數gsinxcosxsin2x,將其圖象向左移個單位,并向上移個單位,得到函數facos2b的圖象.

(Ⅰ)求實數ab, 的值;

(Ⅱ)設函數φgfx,求函數φ的單調遞增區(qū)間和最值.

查看答案和解析>>

同步練習冊答案