【題目】在直角坐標(biāo)系中,曲線:與直線:交于,兩點.
(1)若的面積為,求;
(2)軸上是否存在點,使得當(dāng)變動時,總有?若存在,求以線段為直徑的圓的方程;若不存在,請說明理由.
【答案】(1)(2)存在,方程為(或)
【解析】
(1)聯(lián)立直線與拋物線方程,設(shè)出,兩點坐標(biāo),結(jié)合韋達(dá)定理,由弦長公式求出,由點到直線距離公式求出到的距離,再由即可求出結(jié)果;
(2)等價于直線,傾斜角互補,所以只需求出使直線,斜率之和為的點坐標(biāo)即可,進(jìn)而可求出結(jié)果.
解:(1)將代入,得,
設(shè),,則,,
從而 .
因為到的距離為,
所以的面積 ,
解得.
(2)存在符合題意的點,證明如下:
設(shè)為符合題意的點,直線,的斜率分別為,.
從而
.
當(dāng)時,有,則直線的傾斜角與直線的傾斜角互補,
故,所以點符合題意.
故以線段為直徑的圓的方程為(或)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國工業(yè)經(jīng)濟發(fā)展迅速,工業(yè)增加值連年攀升,某研究機構(gòu)統(tǒng)計了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點圖和表中數(shù)據(jù),此研究機構(gòu)對工業(yè)增加值(萬億元)與年份序號的回歸方程類型進(jìn)行了擬合實驗,研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請計算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);
(3)預(yù)測到哪一年的工業(yè)增加值能突破30萬億元大關(guān).
附:樣本 的相關(guān)系數(shù),
,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項:第一次取1;第二次取2個連續(xù)偶數(shù)2,4;第三次取3個連續(xù)奇數(shù)5,7,9;第四次取4個連續(xù)偶數(shù)10,12,14,16;第五次取5個連續(xù)奇數(shù)17,19,21,23,25,按此規(guī)律取下去,得到一個子數(shù)列1,2,4,5,7,9,10,12,14,16,17,19…,則在這個子數(shù)中第2014個數(shù)是( )
A. 3965 B. 3966 C. 3968 D. 3989
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.現(xiàn)以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)系方程和直線的普通方程;
(2)點在曲線上,且到直線的距離為,求符合條件的點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知五棱錐P-ABCDE,其中ABE,PCD均為正三角形,四邊形BCDE為等腰梯形,BE=2BC=2CD=2DE=4,PB=PE=.
(Ⅰ)求證:平面PCD⊥平面ABCDE;
(Ⅱ)若線段AP上存在一點M,使得三棱錐P-BEM的體積為五棱錐P-ABCDE體積的,求AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,橢圓分別為橢圓的左、右焦點.
(1)當(dāng)直線過右焦點時,求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于兩點,為坐標(biāo)原點,且,若點在以線段為直徑的圓內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com