【題目】已知是拋物線:上異于原點(diǎn)的動(dòng)點(diǎn), 是平面上兩個(gè)定點(diǎn).當(dāng)的縱坐標(biāo)為時(shí),點(diǎn)到拋物線焦點(diǎn)的距離為.

(1)求拋物線的方程;

2)直線于另一點(diǎn),直線于另一點(diǎn),記直線的斜率為,直線的斜率為. 求證: 為定值,并求出該定值.

【答案】(1) (2)證明見解析.

【解析】分析:(1)由已知條件和拋物線的定義可得?汕蟮。故拋物線方程為 。(2)要表示斜率,應(yīng)先設(shè)出點(diǎn)的坐標(biāo),找坐標(biāo)之間的關(guān)系,再求斜率乘積為定值。因?yàn)辄c(diǎn) , 在拋物線上,故可設(shè), , 。利用點(diǎn) ,求出直線的斜率進(jìn)而求其方程為: ,將該方程與拋物線方程聯(lián)立,,根據(jù)兩根積求得,求出。同理可得: 。進(jìn)而求。因?yàn)?/span>所以求得結(jié)論。

詳解:(1)點(diǎn)到拋物線焦點(diǎn)的距離為

點(diǎn)到準(zhǔn)線的距離為

,得

拋物線方程為

(2)設(shè), ,

直線的方程為: ,得

,即

同理可得:

為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于下列命題:

①若是第一象限角,且,則;

②函數(shù)是偶函數(shù);

③函數(shù)的一個(gè)對稱中心是;

④函數(shù)上是增函數(shù),

所有正確命題的序號是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱中,各棱長均為4, 分別是,的中點(diǎn).

(1)求證:平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面為矩形,

.

(1)求證: ;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),,動(dòng)點(diǎn)P滿足

若點(diǎn)P為曲線C,求此曲線的方程;

已知直線l在兩坐標(biāo)軸上的截距相等,且與中的曲線C只有一個(gè)公共點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,弦CD⊥AB于點(diǎn)M,E是CD延長線上一點(diǎn),AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于G.
(1)求證:△EFG為等腰三角形;
(2)求線段MG的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)為偶函數(shù),求的值;

(2)若,求函數(shù)的單調(diào)遞增區(qū)間;

(3)當(dāng)時(shí),若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在的偶函數(shù),在區(qū)間是減函數(shù),且圖象過點(diǎn)原點(diǎn),則不等式的解集為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+ax2﹣3ax+1的圖象經(jīng)過四個(gè)象限,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案