【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,的中點,,.

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見解析.(Ⅱ).

【解析】試題分析:(Ⅰ)在中,得,再由平面底面,證的底面,即可證明.

(Ⅱ)由(Ⅰ)可知平面,建立空間直角坐標系,得到為平面的一個法向量,且,再求得平面的法向量為,利用向量的夾角公式,即可求解二面角的余弦值.

試題解析:

(Ⅰ)在中,,的中點,所以.

因為平面底面,且平面底面,

所以底面.

平面

所以.

(Ⅱ)在直角梯形中,,,的中點,

所以,

所以四邊形為平行四邊形.

因為,所以,由(Ⅰ)可知平面,

為坐標原點,建立如圖所示的空間直角坐標系.

,,,,.

因為,,所以平面,

為平面的一個法向量,且.

因為是棱的中點,所以點的坐標為,

,設平面的法向量為.

,即

,得,,所以.

從而 .

由題知,二面角為銳角,所以二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,且分別為線段的中點,沿折起,使,得到如下的立體圖形.

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長方體中,

(1)求直線所成角;

(2)求直線與平面所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)為偶函數(shù),求實數(shù)的值;

2)若,求函數(shù)的單調(diào)遞減區(qū)間;

3)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若,使成立,則實數(shù)的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的單調(diào)遞增區(qū)間;

2)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線的頂點在原點,且該拋物線經(jīng)過點,其焦點軸上.

(Ⅰ)求過點且與直線垂直的直線的方程;

(Ⅱ)設過點的直線交拋物線,兩點,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知橢圓的上下兩個焦點分別為,且,橢圓過點

(1)求橢圓的標準方程;

(2)設橢圓的一個頂點為,直線交橢圓于另一個點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點 在橢圓上,且橢圓的離心率為.

(1)求橢圓的標準方程;

(2)記橢圓的左、右頂點分別為,點軸上任意一點(異于點),過點的直線與橢圓相交于兩點.

①若點的坐標為,直線的斜率為,求的面積;

②若點的坐標為,連結(jié)交于點,記直線的斜率分別為,證明:是定值.

查看答案和解析>>

同步練習冊答案