【題目】設集合A={x|0≤x≤2},B={y|1≤y≤2},若對于函數(shù)y=f(x),其定義域為A,值域為B,則這個函數(shù)的圖象可能是( )
A.
B.
C.
D.

【答案】D
【解析】解:由函數(shù)定義知A定義域為[0,1],故A不滿足題意;
B表示函數(shù)的圖象值域為[0,2],故B不滿足題意;
C函數(shù)的值域為[0,2],故C不滿足題意;
D的定義域與值域都與題目相符,故D滿足題意.

所以答案是:D.

【考點精析】通過靈活運用函數(shù)的圖象和函數(shù)的定義域及其求法,掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值;求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2, . (Ⅰ)如果b=3,求c的值;
(Ⅱ)如果 ,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=100.
(1)求數(shù)列{bn}的通項bn
(2)設數(shù)列{an}的通項an=loga(1+ ),a>0,且a≠1,記Sn是數(shù)列{an}的前n項的和.試比較Sn logabn+1的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(1),f(﹣1),f(2),f(﹣2);
(3)判斷并證明f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且 =﹣
(1)求角B的大;
(2)若a+c=2,SABC= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并加以說明;
(3)求f( )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線x2=4y的焦點F作直線AB,CD與拋物線交于A,B,C,D四點,且AB⊥CD,則 + 的最大值等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M的方程為x2+(y﹣2)2=1,直線l的方程為x﹣2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B.
(1)若∠APB=60°,試求點P的坐標;
(2)若P點的坐標為(2,1),過P作直線與圓M交于C,D兩點,當 時,求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次函數(shù)g(x)滿足g[g(x)]=9x+8,則g(x)是( )
A.g(x)=9x+8
B.g(x)=3x+8
C.g(x)=﹣3x﹣4
D.g(x)=3x+2或g(x)=﹣3x﹣4

查看答案和解析>>

同步練習冊答案