【題目】某廠能夠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)這兩種產(chǎn)品每噸所需的煤、電以及每噸的產(chǎn)值分別是:

用煤(t

用電(kw

產(chǎn)值(千元)

甲種產(chǎn)品

70

20

80

乙種產(chǎn)品

30

50

110

如果該廠每月至多供煤560t,供電450kw,問如何安排生產(chǎn),才能使該廠月產(chǎn)值最大?月產(chǎn)值是多少?

【答案】安排甲月產(chǎn),乙月產(chǎn)時(shí),該廠月產(chǎn)值最大,最大值為1170千元.

【解析】

根據(jù)題意得到不等式組和目標(biāo)函數(shù),畫出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義得到最值。

設(shè)月產(chǎn)甲,乙,則,月產(chǎn)值,

上述不等式組所表示的平面區(qū)域如圖所示的陰影部分,

的最大值問題轉(zhuǎn)化為求軸上截距的最大值.

,解得

即直線與直線的交點(diǎn)坐標(biāo)是

先作直線,平移可知當(dāng)經(jīng)過點(diǎn)時(shí)截距最大.

所以當(dāng),時(shí),

即安排甲月產(chǎn),乙月產(chǎn)時(shí),該廠月產(chǎn)值最大,最大值為1170千元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,右頂點(diǎn),上頂點(diǎn)為B,左右焦點(diǎn)分別為,且,過點(diǎn)A作斜率為的直線l交橢圓于點(diǎn)D,交y軸于點(diǎn)E.

1)求橢圓C的方程;

2)設(shè)P的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的都有?若存在,求出點(diǎn)Q;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.

1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O,與直線l交于點(diǎn)B,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合,,其中,若中有且僅有一個(gè)元素,則r的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤上標(biāo)有第0站,第1站,第2站,……,第100站.一枚棋子開始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k),若擲出反面,棋向前跳兩站(從k),直到棋子跳到第99站(勝利大本營)或跳到第100站(失敗集中營)時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為.

1)求,,的值;

2)求證:,其中;

3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中任取三個(gè)或三個(gè)以上的數(shù),使其和為偶數(shù)的取法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙、丙三臺(tái)機(jī)器是否需要照顧相互之間沒有影響.已知在某1 h內(nèi),甲、乙都需要照顧的概率為0.05,甲、丙都需要照顧的概率為0.1,乙、丙都需要照顧的概率為0.125

1)求甲、乙、丙每臺(tái)機(jī)器在這1 h內(nèi)需要照顧的概率分別是多少?

2)計(jì)算這1 h內(nèi)至少有一臺(tái)機(jī)器需要照顧的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是一個(gè)首項(xiàng)為2,公比為qq1)的等比數(shù)列,且3a1,2a2,a3成等差數(shù)列.

1)求{an}的通項(xiàng)公式;

2)已知數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1,且1n2),求數(shù)列{anbn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC是四面體ABCD中互相垂直的棱,BC=2. AD=2c,且AB+BD=AC+CD=2a,其中ac為常數(shù),則四面體ABCD的體積的最大值是 .

查看答案和解析>>

同步練習(xí)冊答案