【題目】已知函數(shù),
(Ⅰ)若,且是函數(shù)的一個極值,求函數(shù)的最小值;
(Ⅱ)若,求證:,.
【答案】(Ⅰ);(Ⅱ)證明見解析.
【解析】分析:(I)由函數(shù)的解析式可得.結(jié)合,可得, 利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性可得在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)的最小值為.
(II )若,則,,
由在上單調(diào)遞增,分類討論:
①當(dāng)在上單調(diào)遞增時,;
②當(dāng)在上單調(diào)遞減時,;
③當(dāng)在上先減后增時,,, ,
綜上①②③得:,.
詳解:(I),定義域為,
.
由題意知,即,解得,
所以,,
又、、()在上單調(diào)遞增,
可知在上單調(diào)遞增,又,
所以當(dāng)時,;當(dāng)時,.
得在上單調(diào)遞減,在上單調(diào)遞增,
所以函數(shù)的最小值為.
(II )若,得,
由在上單調(diào)遞增,可知在上的單調(diào)性有如下三種情形:
①當(dāng)在上單調(diào)遞增時,
可知,即,即,解得,
,令,則,
所以單調(diào)遞增,,所以;
②當(dāng)在上單調(diào)遞減時,
可知,即,即,解得,
得,所以;
[或:令,則,
所以單調(diào)遞減,,所以;]
③當(dāng)在上先減后增時,得在上先負后正,
所以,,即,取對數(shù)得,
可知 ,
所以;
綜上①②③得:,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B為橢圓()和雙曲線的公共頂點,P、Q分別為雙曲線和橢圓上不同于A、B的動點,且(,),設(shè)AP、BP、AQ、BQ的斜率分別為、、、.
(1)若,求的值(用a、b的代數(shù)式表示);
(2)求證:;
(3)設(shè)、分別為橢圓和雙曲線的右焦點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,丙所得為( )
A.錢B.1錢C.錢D.錢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)若函數(shù)在區(qū)間上有極值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸的交點至少有一個在原點右側(cè).
(1)求實數(shù)的取值范圍;
(2)令,求的值(其中表示不超過的最大整數(shù),例如:,);
(3)對(2)中的求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表1所示:
表一
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了如下圖所示的散點圖.
(1)根據(jù)散點圖判斷,在推廣期內(nèi),與(,均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如表2
表2
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
比例 | 10% | 60% | 30% |
已知該線路公交車票價為2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客,享受7折優(yōu)惠的概率為,享受8折優(yōu)惠的概率為,享受9折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,估計一名乘客一次乘車的平均費用.
參考數(shù)據(jù):
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中,
參考公式:對于一組數(shù)據(jù),,……,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付,某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點圖:
(I)根據(jù)散點圖判斷在推廣期內(nèi),與(c,d為為大于零的常數(shù))哪一個適宜作為掃碼支付的人次y關(guān)于活動推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(I)的判斷結(jié)果求y關(guān)于x的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次.
參考數(shù)據(jù):
4 | 62 | 1.54 | 2535 | 50.12 | 140 | 3.47 |
其中,
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量AQI指數(shù)是反映空氣質(zhì)量狀況指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如表:
AQI指數(shù)值 | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
如圖所示的是某市11月1日至20日AQI指數(shù)變化的折線圖:
下列說法不正確的是( )
A.這天中空氣質(zhì)量為輕度污染的天數(shù)占
B.這天中空氣質(zhì)量為優(yōu)和良的天數(shù)為天
C.這天中AQI指數(shù)值的中位數(shù)略低于
D.總體來說,該市11月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com