【題目】已知實數(shù)a、b滿足a2+b2-ab3

1)求a-b的取值范圍;

2)若ab0,求證:

【答案】1)﹣2ab2;(2)證明見解析.

【解析】

1)由已知得a2+b23+ab2|ab|

ab0時,3+ab2ab,解得ab3,即0ab3;

ab0時,3+ab≥﹣2ab,解得 ab≥﹣1,即﹣1ab0,

03ab4,即0≤(ab24,即﹣2ab2;

2)由(1)知0ab3,可得

利用配方法即可容易證明.

1)因為a2+b2ab3,所以a2+b23+ab2|ab|

ab0時,3+ab2ab,解得ab3,即0ab3;

ab0時,3+ab≥﹣2ab,解得 ab≥﹣1,即﹣1ab0,

所以﹣1ab3,則03ab4,

而(ab2a2+b22ab3+ab2ab3ab

所以0≤(ab24,即﹣2ab2;

2)由(1)知0ab3,

因為

當且僅當ab2時取等號,

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機銷量約占,電視機銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )

A. 電視機銷量最大的是第4季度

B. 電冰箱銷量最小的是第4季度

C. 電視機的全年銷量最大

D. 電冰箱的全年銷量最大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近五年來某草場羊只數(shù)量與草場植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點圖,如圖所示:

年份

1

2

3

4

5

羊只數(shù)量(萬只)

1.4

0.9

0.75

0.6

0.3

草地植被指數(shù)

1.1

4.3

15.6

31.3

49.7

根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為,則;③可以利用回歸直線方程,準確地得到當羊只數(shù)量為2萬只時的草場植被指數(shù);以上判斷中正確的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=x2+acosx

1)求函數(shù)fx)的奇偶性.并證明當|a|2時函數(shù)fx)只有一個極值點;

2)當aπ時,求fx)的最小值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年春節(jié)期間,新型冠狀病毒(2019nCoV)疫情牽動每一個中國人的心,危難時刻全國人民眾志成城.共克時艱,為疫區(qū)助力.我國SQ市共100家商家及個人為緩解湖北省抗疫消毒物資壓力,募捐價值百萬的物資對口輸送湖北省H市.

1)現(xiàn)對100家商家抽取5家,其中2家來自A地,3家來自B地,從選中的這5家中,選出3家進行調(diào)研.求選出3家中1家來自A地,2家來自B地的概率.

2)該市一商家考慮增加先進生產(chǎn)技術(shù)投入,該商家欲預測先進生產(chǎn)技術(shù)投入為49千元的月產(chǎn)增量.現(xiàn)用以往的先進技術(shù)投入xi(千元)與月產(chǎn)增量yi(千件)(i1,2,3,…,8)的數(shù)據(jù)繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近,且:,,,,其中,,,根據(jù)所給的統(tǒng)計量,求y關(guān)于x回歸方程,并預測先進生產(chǎn)技術(shù)投入為49千元時的月產(chǎn)增量.

附:對于一組數(shù)據(jù)(u1,v1)(u2,v2),其回歸直線vα+βu的斜率和截距的最小二乘法估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4個相同的小球全部放入2個不同的盒子里,每個盒子至少放1個球,不同的放法數(shù)記為;把4個不同的小球全部放入2個不同的盒子里,每個盒子至少放1個球,不同的放法數(shù)記為.現(xiàn)在從的所有整數(shù)中(包括兩個整數(shù))抽取3個數(shù),則這3個數(shù)之和共有( )種結(jié)果.

A.26B.27C.28D.29

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,上頂點為A,過的直線y軸交于點M,滿足O為坐標原點),且直線l與直線之間的距離為.

1)求橢圓C的方程;

2)在直線上是否存在點P,滿足?存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.

1)經(jīng)過1輪投球,記甲的得分為,求的分布列;

2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.

①求;

②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關(guān)于b的表達式,并由此求出數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

同步練習冊答案