已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的離心率等于( )
分析:根據(jù)橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,c=
,可求橢圓的離心率.
解答:解:由題意,∵橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,
故答案為:D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
((本小題滿分14分)
已知圓
的圓心為
,半徑為
,圓
與橢圓
:
有一個(gè)公共點(diǎn)
(3,1),
分別是橢圓的左、右焦點(diǎn).
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
P的坐標(biāo)為(4,4),試探究斜率為
k的直線
與圓
能否相切,若能,求出橢圓
和直線
的方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分16分)
如圖,橢圓
過(guò)點(diǎn)
,其左、右焦點(diǎn)分別為
,離心率
,
是橢圓右準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且
.
(1)求橢圓的方程;
(2)求
的最小值;
(3)以
為直徑的圓
是否過(guò)定點(diǎn)?
請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)橢圓
的左右焦點(diǎn)分別為
、
,
是橢圓
上的一點(diǎn),且
,坐標(biāo)原點(diǎn)
到
直線
的距離為
.
(1)求橢圓
的方程;
(2) 設(shè)
是橢圓
上的一點(diǎn),過(guò)點(diǎn)
的直線
交
軸于點(diǎn)
,交
軸于點(diǎn)
,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓方程為
(
)
,拋物線方程為
.過(guò)拋物線的焦點(diǎn)作
軸的垂線,與拋物線在第一象限的交點(diǎn)為
,拋物線在點(diǎn)
處的切線經(jīng)過(guò)橢圓的右焦點(diǎn)
.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)
為橢圓上的動(dòng)點(diǎn),由
向
軸作垂線
,垂足為
,且直線
上一點(diǎn)
滿足
,求點(diǎn)
的軌跡方程,并說(shuō)明軌跡是什么曲線?
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
橢圓
G:
的兩個(gè)焦點(diǎn)
、
,
M是橢圓上一點(diǎn),且滿足
.
(1)求離心率
的取值范圍;
(2)當(dāng)離心率
取得最小值時(shí),點(diǎn)
到橢圓上的點(diǎn)的最遠(yuǎn)距離為
;
①求此時(shí)橢圓
G的方程;
②設(shè)斜率為
(
)的直線
與橢圓G相交于不同的兩點(diǎn)
A、
B,
Q為
AB的中點(diǎn),問:
A、
B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)
、
Q的直線對(duì)稱?若能,求出
的取值范圍;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
過(guò)橢圓
的右焦點(diǎn)F作直線
交橢圓于M,N兩點(diǎn),設(shè)
(1)求直線
的斜率;
(2)設(shè)M,N在直線
上的射影分別為M
1,N
1,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
方程
的曲線是焦點(diǎn)在
上的橢圓 ,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
橢圓
中,以點(diǎn)M(-1,2)為中點(diǎn)的弦所在的直線斜率為 ▲
查看答案和解析>>