已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的離心率等于(   )
A. B.C. D.
D
分析:根據(jù)橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,c=,可求橢圓的離心率.
解答:解:由題意,∵橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,

故答案為:D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分14分)
已知圓的圓心為,半徑為,圓與橢圓: 有一個(gè)公共點(diǎn)(3,1),分別是橢圓的左、右焦點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線與圓能否相切,若能,求出橢圓和直線的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)
如圖,橢圓過(guò)點(diǎn),其左、右焦點(diǎn)分別為,離心率,是橢圓右準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且
(1)求橢圓的方程;
(2)求的最小值;
(3)以為直徑的圓是否過(guò)定點(diǎn)?
請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的左右焦點(diǎn)分別為、是橢圓上的一點(diǎn),且,坐標(biāo)原點(diǎn)直線的距離為
(1)求橢圓的方程;
(2) 設(shè)是橢圓上的一點(diǎn),過(guò)點(diǎn)的直線軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓方程為,拋物線方程為.過(guò)拋物線的焦點(diǎn)作軸的垂線,與拋物線在第一象限的交點(diǎn)為,拋物線在點(diǎn)處的切線經(jīng)過(guò)橢圓的右焦點(diǎn). 
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)為橢圓上的動(dòng)點(diǎn),由軸作垂線,垂足為,且直線上一點(diǎn)滿足,求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


橢圓G的兩個(gè)焦點(diǎn)、,M是橢圓上一點(diǎn),且滿足.                                    
(1)求離心率的取值范圍;
(2)當(dāng)離心率取得最小值時(shí),點(diǎn)到橢圓上的點(diǎn)的最遠(yuǎn)距離為;
①求此時(shí)橢圓G的方程;
②設(shè)斜率為)的直線與橢圓G相交于不同的兩點(diǎn)A、BQAB的中點(diǎn),問:A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)、Q的直線對(duì)稱?若能,求出的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)橢圓的右焦點(diǎn)F作直線交橢圓于M,N兩點(diǎn),設(shè)
(1)求直線的斜率;
(2)設(shè)M,N在直線上的射影分別為M1,N1,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

方程的曲線是焦點(diǎn)在上的橢圓 ,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓中,以點(diǎn)M(-1,2)為中點(diǎn)的弦所在的直線斜率為     ▲     

查看答案和解析>>

同步練習(xí)冊(cè)答案