【題目】已知實(shí)數(shù)滿足約束條件,則的取值范圍是( 。

A. B. C. D.

【答案】D

【解析】

作出不等式組所表示的可行域如圖的陰影部分所示,聯(lián)立得點(diǎn),聯(lián)立得點(diǎn),作直線,為直線軸上截距的當(dāng)直線經(jīng)過(guò)可行域上點(diǎn)時(shí),此時(shí)直線軸上的截距最小,此時(shí)取最小值,即;當(dāng)直線經(jīng)過(guò)可行域上點(diǎn)時(shí),此時(shí)直線軸上的截距最大,此時(shí)取最大值,即,的取值范圍是故選D.

【方法點(diǎn)晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,平面平面,分別是的中點(diǎn).

求證:(I)底面

(II)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n+m(m為常數(shù),n∈N+)
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)m的值及an;
(3)對(duì)于(2)中的an , 記f(n)=λa2n+1﹣4λan+1﹣7,若f(n)<0對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱錐中, , , 分別為 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求異面直線所成角的余弦值;

(Ⅲ)若平面與棱交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次愛心捐款活動(dòng)中,小李為了了解捐款數(shù)額是否和居民自身的經(jīng)濟(jì)收入有關(guān),隨機(jī)調(diào)査了某地區(qū)的個(gè)捐款居民每月平均的經(jīng)濟(jì)收入. 在捐款超過(guò)元的居民中,每月平均的經(jīng)濟(jì)收入沒有達(dá)到元的有個(gè),達(dá)到元的有個(gè);在捐款不超過(guò)元的居民中,每月平均的經(jīng)濟(jì)收入沒有達(dá)到元的有個(gè).

(1)在下圖表格空白處填寫正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額是否超過(guò)元和居民毎月平均的經(jīng)濟(jì)收入是否達(dá)到元有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量居民中,采用隨機(jī)抽樣方法毎次抽取個(gè)居民,共抽取次,記被抽取的個(gè)居民中經(jīng)濟(jì)收入達(dá)到元的人數(shù)為,求和期望的值.

每月平均經(jīng)濟(jì)收入達(dá)到

每月平均經(jīng)濟(jì)收入沒有達(dá)到

合計(jì)

捐款超過(guò)

捐款不超過(guò)

合計(jì)

附: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體中, 平面, 平面 ,且, 的中點(diǎn).

Ⅰ)求證:

Ⅱ)求平面與平面所成的銳二面角的余弦值.

Ⅲ)在棱上是否存在一點(diǎn),使得直線與平面所成的角是.若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心在軸上的圓與直線切于點(diǎn).

(1)求圓的標(biāo)準(zhǔn)方程;

(2)已知,經(jīng)過(guò)原點(diǎn),且斜率為正數(shù)的直線與圓交于兩點(diǎn).

(ⅰ)求證: 為定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一段圓錐曲線,曲線與兩個(gè)坐標(biāo)軸的交點(diǎn)分別是, .

Ⅰ)若該曲線表示一個(gè)橢圓,設(shè)直線過(guò)點(diǎn)且斜率是,求直線與這個(gè)橢圓的公共點(diǎn)的坐標(biāo).

Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)站針對(duì)2015年中國(guó)好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下

觀眾年齡

支持A

支持B

支持C

20歲以下

100

200

600

20歲以上(含20歲)

100

100

400


(1)在所有參與該活動(dòng)的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取5人作為一個(gè)總體,從這5人中任意選取2人,求恰有1人在20歲以下的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案