已知是函數(shù)的一個極值點(diǎn), 其中

(1) 求m與n的關(guān)系式;     (2) 求的單調(diào)區(qū)間;

(3) 當(dāng)時(shí), 函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于3m, 求m的取值范圍.

解:(1) 因?yàn)?sub>是函數(shù)的一個極值點(diǎn), 所以, 即所以

(2) 由(1)知,

當(dāng)時(shí), 有當(dāng)x變化時(shí),的變化如下表:

故有上表知, 當(dāng)時(shí), 單調(diào)遞減, 在單調(diào)遞增, 在上單調(diào)遞減.

(3) 由已知得, 即

所以, 即……①

設(shè) 其函數(shù)開口向上, 由題意知①式恒成立,

所以, 即m的取值范圍為高考資源網(wǎng)www.ks5u.com

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆四川達(dá)州第一中學(xué)高二下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是函數(shù)的一個極值點(diǎn),其中

(1)求的關(guān)系式;

(2)求的單調(diào)區(qū)間;

(3)設(shè)函數(shù)函數(shù)g(x)= ;試比較g(x)與的大小。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東師大附中高三12月(第三次)模擬檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)已知是函數(shù)的一個極值點(diǎn). 

(Ⅰ)求的值;

(Ⅱ)當(dāng),時(shí),證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省寧波萬里國際學(xué)校高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是函數(shù)的一個極值點(diǎn),其中

(1)求的關(guān)系式;        

(2)求的單調(diào)區(qū)間;

(3)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

 已知是函數(shù)的一個極值點(diǎn),其中

(Ⅰ)求的關(guān)系表達(dá)式;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下學(xué)期第一次月考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分)

已知是函數(shù)的一個極值點(diǎn),其中

(1)求的關(guān)系式;

(2)求的單調(diào)區(qū)間;

(3)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于3,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案