設(shè)F是橢圓的右焦點,橢圓上的點與點F的最大距離為M,最小距離為N,則橢圓上與點F的距離等于的點的坐標(biāo)是
A.B.C.D.
B
本題考查橢圓的幾何性質(zhì).
橢圓與焦點的最大距離為最小距離為到焦點的距離等于的點是短軸的端點;
橢圓中,短軸的端點為;所以
;則橢圓上與點F的距離等于的點的坐標(biāo)是.故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為,左頂點為,若,橢圓的離心率為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若是橢圓上的任意一點,求的取值范圍
(III)直線與橢圓相交于不同的兩點(均不是長軸的頂點),垂足為H且,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)斜率為2的直線l過拋物線y2ax(a≠0)的焦點F,且和y軸交于點A,若△OAF(O為坐標(biāo)原點)的面積為4,則拋物線的方程為(  )
A.y2=±4xB.y2=±8C.y2=4xD.y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
定長為3的線段AB兩端點A、B分別在軸,軸上滑動,M在線段AB上,且
(1)求點M的軌跡C的方程;
(2)設(shè)過且不垂直于坐標(biāo)軸的動直線交軌跡C于A、B兩點,問:線段
是否存在一點D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的準(zhǔn)線過雙曲線的一個焦點,則雙曲線的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的一條漸近線的方程為,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)雙曲線的離心率為,且它的一個焦點與拋物線的焦點重合,則此雙曲線的方程__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的中心在原點,離心率為,若它的一條準(zhǔn)線與拋物線的準(zhǔn)線重合,則該雙曲線的方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


拋物線的焦點坐標(biāo)是___________

查看答案和解析>>

同步練習(xí)冊答案