(本小題共13分)

已知為平面直角坐標(biāo)系的原點(diǎn),過點(diǎn)的直線與圓交于,兩點(diǎn).

(I)若,求直線的方程;

(Ⅱ)若的面積相等,求直線的斜率.

(本小題滿分13分)

解:(Ⅰ)依題意,直線的斜率存在,

因?yàn)?直線過點(diǎn),可設(shè)直線.           

因?yàn)?兩點(diǎn)在圓上,所以 ,

因?yàn)?,所以  

所以      所以 到直線的距離等于

所以 ,                                            

 得,                                               

所以  直線的方程為.        ………………………6分

(Ⅱ)因?yàn)?img width=49 height=19 src="http://thumb.zyjl.cn/pic1/0688/278/48778.gif" >與的面積相等,所以, 

設(shè) ,所以

所以   即 。*);           

因?yàn)椤?img width=16 height=17 src="http://thumb.zyjl.cn/pic1/0688/287/48787.gif" >,兩點(diǎn)在圓上,

所以    把(*)代入,得  ,

所以                                           

所以  直線的斜率, 即.            ………………………13分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共13分)

已知函數(shù)

   (I)若x=1為的極值點(diǎn),求a的值;

   (II)若的圖象在點(diǎn)(1,)處的切線方程為

(i)求在區(qū)間[-2,4]上的最大值;

(ii)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆北京市豐臺區(qū)高三年級第二學(xué)期統(tǒng)一練習(xí)理科數(shù)學(xué) 題型:解答題


(本小題共13分)
已知函數(shù)
(Ⅰ)若處取得極值,求a的值;
(Ⅱ)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共13分)

已知向量,設(shè)函數(shù).

(Ⅰ)求函數(shù)上的單調(diào)遞增區(qū)間;

(Ⅱ)在中,,分別是角,,的對邊,為銳角,若,,的面積為,求邊的長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市豐臺區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題

(本小題共13分)

某商場在店慶日進(jìn)行抽獎促銷活動,當(dāng)日在該店消費(fèi)的顧客可參加抽獎.抽獎箱中有大小完全相同的4個(gè)小球,分別標(biāo)有字“生”“意”“興”“隆”.顧客從中任意取出1個(gè)球,記下上面的字后放回箱中,再從中任取1個(gè)球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:依次取到標(biāo)有“生”“意”“興”“隆”字的球?yàn)橐坏泉;不分順序取到?biāo)有“生”“意”“興”“隆”字的球,為二等獎;取到的4個(gè)球中有標(biāo)有“生”“意”“興”三個(gè)字的球?yàn)槿泉劊?/p>

(Ⅰ)求分別獲得一、二、三等獎的概率;

(Ⅱ)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(xué)(文)試題 題型:解答題

(本小題共13分)
已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)的最小正周期及圖象的對稱軸方程式;
(II)當(dāng)a=2時(shí),在的條件下,求的值.

查看答案和解析>>

同步練習(xí)冊答案