【題目】給出下列四個(gè)命題:
①中,是成立的充要條件;
②當(dāng)時(shí),有;
③已知 是等差數(shù)列的前n項(xiàng)和,若,則;
④若函數(shù)為上的奇函數(shù),則函數(shù)的圖象一定關(guān)于點(diǎn)成中心對(duì)稱.其中所有正確命題的序號(hào)為___________.
【答案】①③
【解析】
①利用正弦定理可判斷;②舉反例即可判斷;③利用等差數(shù)列等差中項(xiàng)計(jì)算可判斷;
④根據(jù)奇函數(shù)的性質(zhì)與函數(shù)圖象平移可判斷.
①在△ABC中,由正弦定理可得 , ∴sinA>sinBa>bA>B,因此A>B是sinA>sinB的充要條件,①正確;
②當(dāng)1>x>0時(shí),lnx<0,所以不一定大于等于2,②不成立;
③等差數(shù)列{an}的前n項(xiàng)和,若S7>S5,則S7-S5=a6+a7>0,S9-S3=a4+a5+…+a9=3(a6+a7)>0,因此S9>S3,③正確;
④若函數(shù)為R上的奇函數(shù),則其圖象關(guān)于(0,0)中心對(duì)稱,而函數(shù)y=f(x)的圖象是把y=f(x-)的圖象向左平移個(gè)單位得到的,故函數(shù)y=f(x)的圖象一定關(guān)于點(diǎn)F(-,0)成中心對(duì)稱,④不正確.
綜上只有①③正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為研究學(xué)生語(yǔ)言學(xué)科的學(xué)習(xí)情況,現(xiàn)對(duì)高二200名學(xué)生英語(yǔ)和語(yǔ)文某次考試成績(jī)進(jìn)行抽樣分析.將200名學(xué)生編號(hào)為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(jī)(單位:分)繪成折線圖如下:
(1)若第二段抽取的學(xué)生編號(hào)是026,寫(xiě)出第六段抽取的學(xué)生編號(hào);
(2)在這兩科成績(jī)差低于20分的學(xué)生中隨機(jī)抽取2人進(jìn)行訪談,求2人成績(jī)均是語(yǔ)文成績(jī)高于英語(yǔ)成績(jī)的概率;
(3)根據(jù)折線圖,比較該校高二年級(jí)學(xué)生的語(yǔ)文和英語(yǔ)兩科成績(jī),寫(xiě)出至少兩條統(tǒng)計(jì)結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且0,若過(guò) A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線相切,過(guò)定點(diǎn) M(0,2)的直線與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線的斜率,在x軸上是否存在點(diǎn)P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請(qǐng)說(shuō)明理由;(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古印度“漢諾塔問(wèn)題”:一塊黃銅平板上裝著三根金銅石細(xì)柱,其中細(xì)柱上套著個(gè)大小不等的環(huán)形金盤(pán),大的在下、小的在上.將這些盤(pán)子全部轉(zhuǎn)移到另一根柱子上,移動(dòng)規(guī)則如下:一次只能將一個(gè)金盤(pán)從一根柱子轉(zhuǎn)移到另外一根柱子上,不允許將較大盤(pán)子放在較小盤(pán)子上面.若柱上現(xiàn)有個(gè)金盤(pán)(如圖),將柱上的金盤(pán)全部移到柱上,至少需要移動(dòng)次數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)ae2x+(a﹣2) ex﹣x.
(1)討論的單調(diào)性;
(2)若有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
已知曲線C:(t為參數(shù)), C:(為參數(shù))。
(1)化C,C的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若C上的點(diǎn)P對(duì)應(yīng)的參數(shù)為,Q為C上的動(dòng)點(diǎn),求中點(diǎn)到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為(為參數(shù)),與交于,兩點(diǎn).
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)設(shè)點(diǎn);若、、成等比數(shù)列,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重100克,次品重110 克.現(xiàn)有5袋產(chǎn)品(每袋裝有10個(gè)產(chǎn)品),已知其中有且只有一袋次品(10個(gè)產(chǎn)品均為次品),如果將5袋產(chǎn)品以1-5編號(hào),第袋取出個(gè)產(chǎn)品(=1,2,3,4,5),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號(hào)是2,此時(shí)的重量=__________克;若次品所在袋子的編號(hào)是,此時(shí)的重量=_________克.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com