已知直線l過點P(2,1),且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,求三角形OAB面積的最小值.
分析:設出斜截式方程,寫出面積的表達式,再由不等式得最值.
解答:解:
設直線l為
x
a
+
y
b
=1(a>0,b>0)
,則有關系
2
a
+
1
b
=1
.對
2
a
+
1
b
=1
應用2元均值不等式,
得1=
2
a
+
1
b
≥2
2
a
1
b
=
2
2
ab
,即ab≥8.于是,△OAB面積為S=
1
2
ab≥4
點評:設出適當?shù)闹本方程,可使問題簡化,得出解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(2,3),并與x,y軸正半軸交于A,B二點.
(1)當△AOB面積為
272
時,求直線l的方程.
(2)求△AOB面積的最小值,并寫出這時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(2,3),且在兩坐標軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(-2,1).
(1)當直線l與點B(-5,4)、C(3,2)的距離相等時,求直線l的方程;
(2)當直線l與x軸、y軸圍成的三角形的面積為
12
時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(2,1),且與直線3x+y+5=0垂直,則直線l的方程為
x-3y+1=0
x-3y+1=0

查看答案和解析>>

同步練習冊答案