【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間與極值;

(2)當(dāng)時(shí), 恒成立,求的取值范圍.

【答案】(1)當(dāng)時(shí),函數(shù)取極大值,無(wú)極小值;(2).

【解析】試題分析:(1)將代入,求出函數(shù)的導(dǎo)函數(shù),判斷函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而研究極值;

(2)令,即當(dāng)時(shí), 恒成立.求導(dǎo)研究最值和0比即可.

試題解析:

(1)當(dāng)時(shí),函數(shù),

,

當(dāng)時(shí), ,當(dāng)時(shí), .

所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,

當(dāng)時(shí),函數(shù)取極大值,無(wú)極小值.

(2)令,根據(jù)題意,當(dāng)時(shí), 恒成立.

.

①當(dāng)時(shí), 恒成立,

所以上是增函數(shù),且,所以不符合題意;

②當(dāng), 時(shí), 恒成立,

所以上是增函數(shù),且,所以不符合題意;

③當(dāng)時(shí), ,恒有,故上是減函數(shù),于是“對(duì)任意都成立”的充要條件是,

,解得,故.

綜上, 的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論:
①若α、β為第一象限角,且α>β,則sinα>sinβ
②函數(shù)y=|sinx|與y=|tanx|的最小正周期相同
③函數(shù)f(x)=sin(x+ )在[﹣ , ]上是增函數(shù);
④若函數(shù)f(x)=asinx﹣bcosx的圖象的一條對(duì)稱軸為直線x= ,則a+b=0.
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn) ,若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,焦點(diǎn)為,點(diǎn)在拋物線上,且的距離比到直線的距離小1.

(1)求拋物線的方程;

(2)若點(diǎn)為直線上的任意一點(diǎn),過(guò)點(diǎn)作拋物線的切線,切點(diǎn)分別為,求證:直線恒過(guò)某一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)一動(dòng)點(diǎn)與兩定點(diǎn)連線的斜率之積等于.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)直線 )與軌跡交于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,拋物線上一點(diǎn)的橫坐標(biāo)為1,且到焦點(diǎn)的距離為2.

(1)求拋物線的方程;

(2)設(shè)是拋物線上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線的傾斜角分別為,當(dāng)變化且為定值時(shí),證明直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,幾何體是四棱錐,為正三角形,.

(1)求證:;

(2)若,M為線段AE的中點(diǎn),求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 軸上的動(dòng)點(diǎn) 分別切圓 兩點(diǎn).

(1) ,求切線 的方程;

(2),求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知拋物線,過(guò)焦點(diǎn)的動(dòng)直線交拋物線于兩點(diǎn),拋物線在兩點(diǎn)處的切線相交于點(diǎn).)求的值;()求點(diǎn)的縱坐標(biāo);

查看答案和解析>>

同步練習(xí)冊(cè)答案