【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過點(diǎn) ,若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:角φ的終邊經(jīng)過點(diǎn)

,

,∴

由|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 ,得 ,

,∴ω=3


(2)解:由 ,

可得 ,

∴函數(shù)f(x)的單調(diào)遞增區(qū)間為 k∈z


(3)解:當(dāng) 時(shí), ,

于是,2+f(x)>0,

∴mf(x)+2m≥f(x)等價(jià)于

,得 的最大值為

∴實(shí)數(shù)m的取值范圍是


【解析】(1)利用三角函數(shù)的定義求出φ的值,由|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 ,可得函數(shù)的周期,從而可求ω,進(jìn)而可求函數(shù)f(x)的解析式;(2)利用正弦函數(shù)的單調(diào)增區(qū)間,可求函數(shù)f(x)的單調(diào)遞增區(qū)間;(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,等價(jià)于 ,由此可求實(shí)數(shù)m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樣本a1 , a2 , a3 , …,a10的平均數(shù)為 ,樣本b1 , b2 , b3 , …,b10的平均數(shù)為 ,那么樣本a1 , b1 , a2 , b2 , …,a10 , b10的平均數(shù)為( )
A.+
B. +
C.2( +
D. +

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題:①“若,則”是假命題;②從正方體的面對(duì)角線中任取兩條作為一對(duì),其中所成角為的有48對(duì);③“ ”是方程表示焦點(diǎn)在軸上的雙曲線的充分不必要條件;④點(diǎn)是曲線, )上的動(dòng)點(diǎn),且滿足,則的取值范圍是;⑤若隨機(jī)變量服從正態(tài)分布,且,則.其中正確命題的序號(hào)是__________(請(qǐng)把正確命題的序號(hào)填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列四個(gè)正方體中,為正方體的兩個(gè)頂點(diǎn),為所在棱的中點(diǎn),則在這四個(gè)正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其他費(fèi)用組成.已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為),其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).

(1)請(qǐng)將從甲地到乙地的運(yùn)輸成本(元)表示為航行速度(海里/小時(shí))的函數(shù);

(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),證明時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)骰子先后拋擲兩次,事件表示:“第一次出現(xiàn)奇數(shù)點(diǎn)”,事件表示“第二次的點(diǎn)數(shù)不小于5”,則__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間與極值;

(2)當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一側(cè),排法種數(shù)為( )

A. 12 B. 40 C. 60 D. 80

查看答案和解析>>

同步練習(xí)冊(cè)答案