是兩個(gè)不共線的向量,已知,,且A,B,D三點(diǎn)共線,則實(shí)數(shù)k=   
【答案】分析:先由A,B,D三點(diǎn)共線,可構(gòu)造兩個(gè)向量共線,然后再利用兩個(gè)向量共線的定理建立等式,解之即可.
解答:解:∵A,B,D三點(diǎn)共線,∴共線,
∴存在實(shí)數(shù)λ,使得 =;
=2--(+3)=-4
∴2+k=λ(-4),
是平面內(nèi)不共線的兩向量,
解得k=-8.
故答案為:-8
點(diǎn)評(píng):本題主要考查了三點(diǎn)共線,以及平面向量數(shù)量積的性質(zhì)及其運(yùn)算律,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
是兩個(gè)不共線的向量,其夾角為θ(θ≠90°),若函數(shù)f(x)=(x
a
+
b
)•(
a
-x
b
)
在(0,+∞)上有最大值,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
e1
、
e2
是兩個(gè)不共線的向量,
a
=k2
e1
+(1-
5
2
k)
e2
b
=2
e1
+3
e2
是兩個(gè)共線向量,則實(shí)數(shù)k=
-2或
1
3
-2或
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
e2
是兩個(gè)不共線的向量,且向量
a
=2
e1
-
e2
與向量
b
=
e1
+λ
e2
是共線向量,則實(shí)數(shù)λ=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
是兩個(gè)不共線的向量,且向量
a
b
-(
b
-2
a
)
共線,則λ=
-0.5
-0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e
1
e
2是兩個(gè)不共線的向量,已知
AB
=2
e
1+k
e
2,
CB
=
e
1+3
e
2
CD
=2
e
1-
e
2,若A、B、D三點(diǎn)共線,則k的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案