(A) (B)
(C) (D)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:
可把平面直角坐標(biāo)系上的一點(diǎn)
變換到這一平面上的一點(diǎn)
.
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,且焦距為
,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓
的標(biāo)準(zhǔn)方程,并求出其兩個焦點(diǎn)
、
經(jīng)變換公式
變換后得到的點(diǎn)
和
的坐標(biāo);
(2) 若曲線上一點(diǎn)
經(jīng)變換公式
變換后得到的點(diǎn)
與點(diǎn)
重合,則稱點(diǎn)
是曲線
在變換
下的不動點(diǎn). 求(1)中的橢圓
在變換
下的所有不動點(diǎn)的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點(diǎn)的存在情況和個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換:
可把平面直角坐標(biāo)系上的點(diǎn)
變換到這一平面上的點(diǎn)
.特別地,若曲線
上一點(diǎn)
經(jīng)變換公式
變換后得到的點(diǎn)
與點(diǎn)
重合,則稱點(diǎn)
是曲線
在變換
下的不動點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,且焦距為
,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓
的標(biāo)準(zhǔn)方程. 并求出當(dāng)
時,其兩個焦點(diǎn)
、
經(jīng)變換公式
變換后得到的點(diǎn)
和
的坐標(biāo);
(2)當(dāng)時,求(1)中的橢圓
在變換
下的所有不動點(diǎn)的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換
:
(
,
)下的不動點(diǎn)的存在情況和個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)文(重慶卷)解析版 題型:解答是:本大題
(本小題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問8分.)如圖,橢圓的中心為原點(diǎn),離心率
=
,一條準(zhǔn)線的方程是
=
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動點(diǎn)滿足:
=
,其中
,
是橢圓上的點(diǎn),直線
與
的斜率之積為
.問:是否存在定點(diǎn)
,使得
與點(diǎn)
到直線
:
=
的距離之比為定值?若存在,求
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(重慶卷)解析版 題型:解答題
(本小題滿分12分,第一問4分,第二問8分)
如圖(20),橢圓的中心為原點(diǎn)O,離心率,一條準(zhǔn)線的方程為
。
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程。
(Ⅱ)設(shè)動點(diǎn)P滿足,其中M,N是橢圓上的點(diǎn)。直線OM與ON的斜率之積為
。問:是否存在兩個定點(diǎn)
,使得
為定值。若存在,求
的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com