【題目】以下四個命題,其中正確的個數有( )
①由獨立性檢驗可知,有的把握認為物理成績與數學成績有關,某人數學成績優(yōu)秀,則他有99%的可能物理優(yōu)秀.
②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;
③在線性回歸方程中,當解釋變量每增加一個單位時,預報變量平均增加0.2個單位;
④對分類變量與,它們的隨機變量的觀測值來說, 越小,“與有關系”的把握程度越大.
A. 1 B. 2 C. 3 D. 4
科目:高中數學 來源: 題型:
【題目】已知定義在區(qū)間(0,+∞)上的函數f(x)=|t(x+ )﹣5|,其中常數t>0.
(1)若函數f(x)分別在區(qū)間(0,2),(2,+∞)上單調,試求實數t的取值范圍;
(2)當t=1時,方程f(x)=m有四個不相等的實根x1 , x2 , x3 , x4 . ①求四根之積x1x2x3x4的值;
②在[1,4]上是否存在實數a,b(a<b),使得f(x)在[a,b]上單調且取值范圍為[ma,mb]?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=mx2﹣2x+1有且僅有一個為正實數的零點,則實數m的取值范圍是( )
A.(﹣∞,1]
B.(﹣∞,0]∪{1}
C.(﹣∞,0)∪(0,1]
D.(﹣∞,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第十二屆全國人名代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)分別于2017年3月5日和3月3日在北京開幕,某高校學生會為了解該校學生對全國兩會的關注情況,隨機調查了該校200名學生,并將這200名學生分為對兩會“比較關注”與“不太關注”兩類,已知這200名學生中男生比女生多20人,對兩會“比較關注”的學生中男生人數與女生人數之比為,對兩會“不太關注”的學生中男生比女生少5人.
(1)該校學生會從對兩會“比較關注”的學生中根據性別進行分層抽樣,從中抽取7人,再從這7人中隨機選出2人參與兩會宣傳活動,求這2人全是男生的概率.
(2)根據題意建立列聯表,并判斷是否有99%的把握認為男生與女生對兩會的關注有差異?
附: ,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com