【題目】邊長為2的等邊和有一內(nèi)角為的直角所在半平面構(gòu)成的二面角,則下列不可能是線段的取值的是(

A.B.C.D.

【答案】D

【解析】

根據(jù)題意,變換直角三角形的空間位置關(guān)系.在不同位置情況下,結(jié)合兩個平面形成的二面角度數(shù)及各邊長度關(guān)系,即可求得線段的取值.

(1) ,空間位置關(guān)系如下圖所示:

C,

即為二面角的平面角

所以

由題意可知,

,由余弦定理可知

代入可得

所以

(2),空間位置關(guān)系如下圖所示:

C,

即為二面角的平面角

所以

由題意可知,

,由余弦定理可知

代入可得

所以

(3) ,空間位置關(guān)系如下圖所示:

.,

即為二面角的平面角

所以

由題意可知,,

,由余弦定理可知

代入可得

所以

綜上可知, 線段的取值為,,在四個選項中,不能取的值為

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1),求實數(shù)的值,并求此時上的最小值;

(2)若函數(shù)不存在零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為),直線的參數(shù)方程為為參數(shù)).

1)寫出曲線的直角坐標方程和直線的普通方程;

2)己知點,直線與曲線交于兩點,若,成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線C1的極坐標方程是,在以極點為原點O,極軸為x軸正半軸(兩坐標系取相同的單位長度)的直角坐標系xOy中,曲線C2的參數(shù)方程為θ為參數(shù)).

1)求曲線C1的直角坐標方程與曲線C2的普通方程;

2)將曲線C2經(jīng)過伸縮變換后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是拋物線的焦點,過點且與坐標軸不垂直的直線交拋物線于、兩點,交拋物線的準線于點,其中,.過點軸的垂線交拋物線于點,直線交拋物線于點.

1)求的值;

2)求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(Ⅰ)求直線的直角坐標方程與曲線的普通方程;

(Ⅱ)已知點設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有多年.龍眼干的級別按直徑的大小分為四個等級,其中直徑在區(qū)間為特級品,在的為一級品,在的為二級品,在的為三級品,某商家為了解某農(nóng)場一批龍眼干的質(zhì)量情況,隨機抽取了個龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計得到這些龍眼干的直徑的頻數(shù)分布表如下:

頻數(shù)

1

29

7

用分層抽樣的方法從樣本的一級品和特級品中抽取個,其中一級品有.

1)求、的值,并估計這些龍眼干中特級品的比例;

2)已知樣本中的個龍眼干約克,該農(nóng)場有千克龍眼干待出售,商家提出兩種收購方案:

方案A:以/千克收購;

方案B:以級別分裝收購,每袋個,特級品/袋、一級品/袋、二級品/袋、三級品/.用樣本的頻率分布估計總體分布,哪個方案農(nóng)場的收益更高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點、分別為雙曲線的左、右焦點,雙曲線的離心率為,點在雙曲線上,不在軸上的動點與動點關(guān)于原點對稱,且四邊形的周長為.

(1)求動點的軌跡的方程;

(2)過點的直線交的軌跡,兩點,上一點,且滿足,其中,求的取值范圍.

查看答案和解析>>

同步練習冊答案