【題目】已知橢圓過(guò)拋物線的焦點(diǎn),,分別是橢圓的左、右焦點(diǎn),且.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與拋物線相切,且與橢圓交于,兩點(diǎn),求面積的最大值.

【答案】(1);(2)1.

【解析】試題分析:(1)由已知,求出拋物線的焦點(diǎn)的坐標(biāo),可求得橢圓的值,分別求出向量,的坐標(biāo),由向量數(shù)量積的公式及,從而求橢圓的標(biāo)準(zhǔn)方程;(2)因?yàn)橹本與拋物線相切,由切點(diǎn)可設(shè)直線方程為,再聯(lián)立直線與橢圓方程,由弦長(zhǎng)公式求得的長(zhǎng),由點(diǎn)到直線的距離公式求得原點(diǎn)到的距離,列出面積的計(jì)算式子,從而求得面積的最大值.

試題解析:(1),又,.,

橢圓的標(biāo)準(zhǔn)方程為.

(2)設(shè)直線與拋物線相切于點(diǎn),則,即,

聯(lián)立直線與橢圓,消去,整理得.

,得.

設(shè),則:.

原點(diǎn)到直線的距離.

面積 ,

當(dāng)且僅當(dāng),即取等號(hào),

面積的最大值為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,圓的方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)當(dāng)時(shí),相交于,兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,,,,點(diǎn)中點(diǎn).

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)若,試討論函數(shù)的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查學(xué)生數(shù)學(xué)學(xué)習(xí)的質(zhì)量情況,某校從高二年級(jí)學(xué)生(其中男生與女生的人數(shù)之比為)中,采用分層抽樣的方法抽取名學(xué)生依期中考試的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì).根據(jù)數(shù)學(xué)的分?jǐn)?shù)取得了這名同學(xué)的數(shù)據(jù),按照以下區(qū)間分為八組:

,②,③,④,⑤,⑥,⑦,⑧

得到頻率分布直方圖如圖所示.已知抽取的學(xué)生中數(shù)學(xué)成績(jī)少于分的人數(shù)為人.

(1)求的值及頻率分布直方圖中第④組矩形條的高度;

(2)如果把“學(xué)生數(shù)學(xué)成績(jī)不低于分”作為是否達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的名學(xué)生,完成下列列聯(lián)表:

據(jù)此資料,你是否認(rèn)為“學(xué)生性別”與“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”有關(guān)?

(3)若從該校的高二年級(jí)學(xué)生中隨機(jī)抽取人,記這人中成績(jī)不低于分的學(xué)生人數(shù)為,求的分布列、數(shù)學(xué)期望和方差

附1:“列聯(lián)表”的卡方統(tǒng)計(jì)量公式:

附2:卡方()統(tǒng)計(jì)量的概率分布表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓離心率為,,是橢圓的左、右焦點(diǎn),以為圓心,為半徑的圓和以為圓心、為半徑的圓的交點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的下頂點(diǎn)為,直線與橢圓交于兩個(gè)不同的點(diǎn),是否存在實(shí)數(shù)使得以為鄰邊的平行四邊形為菱形?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥底面 ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,其中BC∥AD AB⊥AD,AD=2AB=2BC=2,OAD中點(diǎn).

)求證:PO⊥平面ABCD

)線段AD上是否存在點(diǎn),使得它到平面PCD的距離為?若存在,求出值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;

(2)已知點(diǎn),點(diǎn),直線過(guò)點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與曲線恰有兩個(gè)不同的交點(diǎn),記的所有可能取值構(gòu)成集合,是橢圓上一動(dòng)點(diǎn),點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,記的所有可能取值構(gòu)成集合,若隨機(jī)從集合中分別抽出一個(gè)元素,則的概率是___

查看答案和解析>>

同步練習(xí)冊(cè)答案