【題目】如圖已知橢圓的焦點在軸上,其離心率為,點在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)橢圓的弦,的中點分別為,,若平行于,直線與橢圓相切,且斜率為1,則斜率之和是否為定值?若是定值,請求出該定值;若不是定值請說明理由.

【答案】12)是定值;定值為0

【解析】

1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,由離心率得,再把點坐標(biāo)代入,得,可解得得方程;

2)點,設(shè)直線的方程為,代入橢圓方程應(yīng)用韋達定理得,求出坐標(biāo),再計算,并代入可得定值.

解:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為

由題意知,

解得,,

所以橢圓方程為.

2)設(shè)點,,則有,,

由題意可知,所以,設(shè)直線的方程為,

代入橢圓方程并化簡得:

由題意可知③,

,

通分后可變形得到,

將③式代入分子,

所以,斜率之和為定值0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)為偶函數(shù),求實數(shù)的值;

(2)若,,且函數(shù)上是單調(diào)函數(shù),求實數(shù)的值;

(3)若,若當(dāng)時,總有,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進行了考核評估,考評分?jǐn)?shù)達到80分及其以上的單位被稱為“星級”環(huán)保單位,未達到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個單位,其考評分?jǐn)?shù)如下:

類行業(yè):85,8277,78,8387;

類行業(yè):76,67,8085,79,81

類行業(yè):87,89,7686,75,84,90,82

(Ⅰ)計算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個單位中,再隨機選取3個單位進行某項調(diào)查,求選出的這3個單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽取20名學(xué)生,其中8名女生中有3名報考理科,男生中有2名報考文科.

(1)根據(jù)以上信息,寫出列聯(lián)表;

(2)用假設(shè)檢驗的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?

參考公式:

pK2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.07

2.71

3.84

5.02

6.64

7.88

10.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)試求函數(shù)的極值點的個數(shù);

(2)若恒成立,求的最大值.

參考數(shù)據(jù):

1.6

1.7

1.74

1.8

10

4.953

5.474

5.697

6.050

22026

0.470

0.531

0.554

0.558

2.303

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)為偶函數(shù)。

1)求的解析式;

2)若方程有三個不同的實數(shù)根,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3xyf(x)上一點P(1,-2),過點P作直線l.

(1)求使直線lyf(x)相切且以P為切點的直線方程;

(2)求使直線lyf(x)相切且切點異于點P的直線方程yg(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為為參數(shù)),交于,兩點.

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)點;若、、成等比數(shù)列,求的值

查看答案和解析>>

同步練習(xí)冊答案