【題目】某商區(qū)停車場臨時停車按時段收費,收費標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人在該商區(qū)臨時停車,兩人停車都不超過4小時. (Ⅰ)若甲停車1小時以上且不超過2小時的概率為 ,停車付費多于14元的概率為 ,求甲停車付費恰為6元的概率;
(Ⅱ)若每人停車的時長在每個時段的可能性相同,求甲、乙二人停車付費之和為36元的概率.
【答案】解:(Ⅰ)設(shè)“甲臨時停車付費恰為6元”為事件A, 則 .
所以甲臨時停車付費恰為6元的概率是 .
(Ⅱ)設(shè)甲停車付費a元,乙停車付費b元,其中a,b=6,14,22,30.
則甲、乙二人的停車費用構(gòu)成的基本事件空間為:(6,6),(6,14),(6,22),(6,30),(14,6),(14,14),(14,22),(14,30),(22,6),(22,14),(22,22),(22,30),(30,6),(30,14),(30,22),(30,30),共16種情形.
其中,(6,30),(14,22),(22,14),(30,6)這4種情形符合題意.
故“甲、乙二人停車付費之和為36元”的概率為 .
【解析】(Ⅰ)根據(jù)題意,由全部基本事件的概率之和為1求解即可.(Ⅱ)先列出甲、乙二人停車付費之和為36元的所有情況,再利用古典概型及其概率計算公式求概率即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣x3+3x+2分別在x1、x2處取得極小值、極大值.xOy平面上點A、B的坐標(biāo)分別為(x1 , f(x1))、(x2 , f(x2)),該平面上動點P滿足 =4.求:
(1)求點A、B的坐標(biāo);
(2)求動點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],下列命題中正確命題的序號 .
①函數(shù)f(x)的最大值為1;
②函數(shù)f(x)的最小值為0;
③方程f(x)﹣ =0有無數(shù)個解;
④函數(shù)f(x)是增函數(shù);
⑤對任意的x∈R,函數(shù)f(x)滿足f(x+1)=f(x);
⑥函數(shù)f(x)的圖象與函數(shù)g(x)=|lgx|的圖象的交點個數(shù)為10個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,把方程f(x)-x=0的根按從小到大順序排成一個數(shù)列,則該數(shù)列的前n項和Sn=_________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a是實數(shù),函數(shù)f(x)=x2(x﹣a). (Ⅰ)若f′(1)=3,求a的值及曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[0,2]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,,8)數(shù)據(jù)作了初步處理, 得到下面的散點圖及一些統(tǒng)計量的值.
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
其中wi= , =
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d 哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y﹣x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(i)年宣傳費x=49時,年銷售量及年利潤的預(yù)報值是多少?
(ii)年宣傳費x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(u1 , v1),(u2 , v2),,(un , vn),其回歸直線v=α+βμ的斜率和截距的最小二乘估計分別為: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sinx的圖象上所有點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個單位長度后得到函數(shù)f(x)的圖象
(1)寫出函數(shù)f(x)的解析式;
(2)若對任意的x∈[﹣ , ],f2(x)﹣mf(x)﹣1≤0恒成立,求實數(shù)m的取值范圍;
(3)求實數(shù)a和正整數(shù)n,使得F(x)=f(x)﹣a在[0,nπ]上恰有2017個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(sinx, cosx), =(﹣1,1), =(1,1),其中x∈(0,π].
(1)若( + )∥ ,求實數(shù)x的值;
(2)若 = ,求函數(shù)sinx的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且|PF1|>|PF2|,橢圓的離心率為e1 , 雙曲線的離心率為e2 , 若|PF2|=|F1F2|,則 + 的最小值為( )
A.6+2
B.8
C.6+2
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com