(本小題16分)

已知函數(shù)

   (I)試用含的代數(shù)式表示;

   (Ⅱ)求的單調區(qū)間;w.w.w.k.s.5.u.c.o.m                 

   (Ⅲ)令,設函數(shù)處取得極值,記點,證明:線段與曲線存在異于、的公共點;

解法一:

依題意,得 ,--------------------------------------------------2分

.------------------------------------------------------------------------------------4分

 ,

,

,則,--------------------------------------------------6分

①     當時, ,

變化時, 的變化如下表:

(,)

(,)

(, )

+

-

+

單調遞增

單調遞減

單調遞增

由此得,函數(shù)的單調增區(qū)間為(,)和(, ),單調減區(qū)間為(,).

②     當時, .此時恒成立,且僅在,故函數(shù)的單調增區(qū)間為.

③     當時, ,同理可得函數(shù)的單調增區(qū)間為,單調減區(qū)間為.--------------------------------------------------9分

綜上:當時,函數(shù)的單調增區(qū)間為(,)和(, ),單調減區(qū)間為(,);當時,函數(shù)的單調增區(qū)間為; 當時,函數(shù)的單調增區(qū)間為,單調減區(qū)間為.-------------------------------10分

(Ⅲ)當時,得

,得,.

由(Ⅱ)得單調區(qū)間為,單調減區(qū)間為,所以函數(shù),處取得極值;

.------------------------------------------------------------12分

所以直線的方程為,

,得-------------------------------14分

.

易得,.而的圖像在內是一條連續(xù)不斷的曲線,故內存在零點,這表明線段與曲線存在異于、的公共點. --------------------------------------------------------------------------------------------------------------16分

解法二:

(I)同解法一

(II)同解法一

(Ⅲ) 當時,得,由,得,.

由(Ⅱ)得單調區(qū)間為,單調減區(qū)間為,所以函數(shù),處取得極值;

,.------------------------------------------------------------12分

所以直線的方程為,

,得-------------------------------14分

解得:, , .

, , .

所以線段與曲線存在異于、的公共點.--------------16分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題16分)已知,g(x)=x+a  (a>0)(1)當a=4時,求的最小值;(2)當時,不等式>1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題16分)

已知是定義在上的偶函數(shù),且時,

(1)求;

(2)求函數(shù)的表達式;

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題16分)

已知函數(shù)).

(1)求函數(shù)的值域;

(2)①判斷函數(shù)的奇偶性;②用定義判斷函數(shù)的單調性;

(3)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題16分)

已知函數(shù)).

(1)求函數(shù)的值域;

(2)①判斷函數(shù)的奇偶性;②用定義判斷函數(shù)的單調性;

(3)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題16分)

已知是定義在上的偶函數(shù),且時,

(1)求,

(2)求函數(shù)的表達式;

(3)若,求的取值范圍.

查看答案和解析>>

同步練習冊答案