(本小題16分)

已知函數(shù)).

(1)求函數(shù)的值域;

(2)①判斷函數(shù)的奇偶性;②用定義判斷函數(shù)的單調性;

(3)解不等式

解析:(1)∵ ,………………………… 2分

 ,∴

∴函數(shù)的值域為………………………………4分

(2)證明:①, ………………………6分

∴函數(shù)為奇函數(shù)                           ………………………7分

=

在定義域中任取兩個實數(shù),且,        …………………………8分

               …………………………10分

,從而  …………………………11分

∴函數(shù)上為單調增函數(shù)                …………………………12分

(3)由(2)得函數(shù)為奇函數(shù),在R上為單調增函數(shù)

 即,

,            …………………………14分

∴原不等式的解集為             …………………………16分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題16分)

已知函數(shù)).

(1)求函數(shù)的值域;

(2)①判斷函數(shù)的奇偶性;②用定義判斷函數(shù)的單調性;

(3)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題16分)

已知是定義在上的偶函數(shù),且時,

(1)求,;

(2)求函數(shù)的表達式;

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省揚州市高三第四次模擬考試數(shù)學試題 題型:解答題

(本小題16分)

已知拋物線的頂點在坐標原點,對稱軸為軸,焦點在直線上,直線與拋物線相交于兩點,為拋物線上一動點(不同于),直線分別交該拋物線的準線于點。

(1)求拋物線方程;

(2)求證:以為直徑的圓經過焦點,且當為拋物線的頂點時,圓與直線相切。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高一第一學期期末測試數(shù)學試卷 題型:解答題

(本小題16分)

已知△OAB的頂點坐標為,,, 點P的橫坐標為14,且,點是邊上一點,且.

(1)求實數(shù)的值與點的坐標;

(2)求點的坐標;

(3)若為線段上的一個動點,試求的取值范圍.

 

查看答案和解析>>

同步練習冊答案