正四面體ABCD中,AO⊥平面BCD,垂足為,設(shè)是線段上一點(diǎn),且是直角,則的值為 .
1.
解析試題分析:延長(zhǎng)BO,交CD于點(diǎn)N,可得BN⊥CD且N為CD中點(diǎn)
設(shè)正四面體ABCD棱長(zhǎng)為1,得等邊△ABC中,BN=,BC=
∵AO⊥平面BCD,∴O為等邊△ABC的中心,得BO=,BN=,
Rt△ABO中,AO==
設(shè)MO=x,則Rt△BOM中,BM==
∵∠BMC=90°,得△BMC是等腰直角三角形,
∴BM=AM=BC,即=,解之得x=
由此可得AM=AO-MO=,所以MO=AM=,從而=1.
考點(diǎn):本題主要考查正四面體的幾何性質(zhì),垂直關(guān)系。
點(diǎn)評(píng):中檔題,本題充分借助于正四面體的幾何性質(zhì),通過(guò)發(fā)現(xiàn)等腰三角形,靈活利用勾股定理,達(dá)到解題目的。本題解法充分體現(xiàn)了立體幾何問(wèn)題轉(zhuǎn)化成平面幾何問(wèn)題的基本思路。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在正三棱錐中,側(cè)面、側(cè)面、側(cè)面兩兩垂直,且側(cè)棱
,則正三棱錐外接球的表面積為_(kāi)___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知正四面體的俯視圖如圖所示,其中四邊形ABCD是邊長(zhǎng)為2的正方形,則這個(gè)正四面體的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
四面體的五條棱長(zhǎng)都是2,另一條棱長(zhǎng)為1,則四面體的體積為( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com