如圖示,在底面為直角梯形的四棱椎P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求點D到平面PBC的距離.
(1)證明:令BD與AC相交于點O,
∵在底面為直角梯形的四棱椎P-ABCD中,
ADBC,∠ABC=90°,PA⊥平面ABCD,
PA=4,AD=2,AB=2
3
,BC=6.
∴AC=
(2
3
)2+62
=4
3
,BD=
(2
3
)2+22
=4
∵ADBC,∴△AOD~△BOC,
AD
BC
=
2
6
=
1
3
,∴BO=
3
4
×4=3,AO=
1
4
×4
3
=
3
,
∴BO2+AO2=(3)2+(
3
2=12=AB2
∴由勾股定理得:BO⊥AC,即:BD⊥AC,又BD⊥PA,AC∩PA=A,
∴BD⊥平面PAC.(3分)
(2)由(1)知:DO⊥平面PAC,
過O作OH⊥PC于H,連DH,則DH⊥PC
則∠DHO就是二面角A-PC-D的平面角,DO=
1
4
×BD=
1
4
×4=1,
CO=
3
4
×AC=
3
4
×4
3
=3
3
,
在Rt△PAC和Rt△OHC中,
∵∠PAC=∠OHC,∠PCA=∠HCO,∴Rt△PAC~Rt△OHC,
OH
PA
=
OC
PC
,又∵PC=
PA2+AC2
=8,OH=
3
3
2

∴tan∠DHO=
DO
OH
=
2
3
9
,
∴二面角A-PC-D的正切值為
2
3
9
.(7分)
(3)設(shè)點D到平面PBC的距離為h,
∵VD-PBC=VP-BDC,
1
3
S△PBC•h
=
1
3
S△BDC•PA
=
1
3
•[
1
2
(2+6)•2
3
-
1
2
×2×2
3
]•4
=8
3

∵BC=6,PB=
16+12
=2
7
,PC=
16+48
=8,
∴BC⊥PB,∴S△PBC=
1
2
×6×2
7
=6
7
,
∴h=
8
3
1
3
×6
7
=
4
21
7

∴點D到平面PBC的距離為
4
21
7
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

ABC的頂點A,B,C到平面的距離依次為a、b、c,且點A與邊BC在平面的兩側(cè),則△ABC的重心G到平面的距離為                 (   )
A. B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知ABCD-A1B1C1D1是棱長為a的正方體,E、F分別是棱AA1和CC1的中點,G是A1C1的中點,求:
(1)點G到平面BFD1E的距離;
(2)四棱錐A1-BFD1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個正三棱柱的每一條棱長都是a,則經(jīng)過底面一邊和相對側(cè)棱的一個端點的截面(即圖中△ACD)的面積為( 。
A.
7
4
a2
B.
7
2
a2
C.
6
3
a2
D.
7
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,ABDC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明:B1C1⊥CE;
(2)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為
2
6
.求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,A∉平面α,AB、AC是平面α的兩條斜線,O是A在平面α內(nèi)的射影,AO=4,OC=
3
,BO⊥OC,∠OBA=30°,則C到AB的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長為1的正方形,若A1AB=∠A1AD=600,且A1A=3,則A1C的長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直四棱柱ABCD-A1B1C1D1口,ABCD,AD⊥AB,AB=2,AD=
2
,AA1=3,E為CD7一點,DE=1,EC=3
(1)證明:BE⊥平面BB1C1C;
(2)求點B1到平面EA1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA⊥PD,E,F(xiàn)分別為PC,BD的中點.證明
(1)EF平面PAD;
(2)EF⊥平面PDC.

查看答案和解析>>

同步練習(xí)冊答案