如圖所示,A∉平面α,AB、AC是平面α的兩條斜線,O是A在平面α內(nèi)的射影,AO=4,OC=
3
,BO⊥OC,∠OBA=30°,則C到AB的距離為______.
在Rt△AOB中,
∵AO=4,∠OBA=30°,
∴AB=8,OB=4
3

∵BO⊥OC,
在Rt△BOC中,由OC=
3

∴BC=
51

在Rt△AOC中,AC=
19

在△ABC中,cosB=
51+64-19
2•
51
•8
=
2
51
17

∴sinB=
85
17

則C到AB的距離為BC•sinB=
51
85
17
=
15

故答案為:
15
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

Rt△ABC兩直角邊分別為3、4,PO⊥面ABC,O是△ABC的內(nèi)心,PO=
3
,則點(diǎn)P到△ABC的斜邊AB的距離是( 。
A.
3
B.
2
2
C.
3
2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐O-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,OA⊥底面ABCD,OA=2,M為OA中點(diǎn).
(1)求證:直線BD⊥平面OAC;
(2)求點(diǎn)A到平面OBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,E為DD1的中點(diǎn).
(1)求證:BD1平面EAC;
(2)求點(diǎn)D1到平面EAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖示,在底面為直角梯形的四棱椎P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平行六面體ABCD-A1B1C1D1中,以頂點(diǎn)A為端點(diǎn)的三條棱長(zhǎng)都為1,且兩夾角為60°.
(1)求AC1的長(zhǎng);
(2)求BD1與AC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正四面體的四個(gè)頂點(diǎn)都在表面積為36π的一個(gè)球面上,則這個(gè)正四面體的高等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯(cuò)誤的序號(hào)是 ______.
①BD平面CB1D1;
②AC1⊥BD;
③AC1⊥平面CB1D1;
④異面直線AD與CB1所成角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
(1)求證:CD平面EFGH;
(2)如果AB=CD=a,求證:四邊形EFGH的周長(zhǎng)為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案