【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線 | 一線 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
由K2=,得K2=.
參照下表,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
正確的結(jié)論是( )
A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關(guān)”
C. 有99%以上的把握認為“生育意愿與城市級別有關(guān)”
D. 有99%以上的把握認為“生育意愿與城市級別無關(guān)”
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù)f(x)=xln x-x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若x>0,f(x)+ax2≤0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4cosθ-2sinθ.
(Ⅰ)求C的參數(shù)方程;
(Ⅱ)若點A在圓C上,點B(3,0),求AB中點P到原點O的距離平方的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f().
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象
A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變
B. 向左平移至個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變
C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變
D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856264)
已知函數(shù)f(x)=aln x,e為自然對數(shù)的底數(shù).
(Ⅰ)曲線f(x)在點A(1,f(1))處的切線與坐標軸所圍成的三角形的面積為2,求實數(shù)a的值;
(Ⅱ)若f(x)≥1-恒成立,求實數(shù)a的值取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856289)[選修4-4:坐標系與參數(shù)方程]
直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2(sinθ+cosθ),直線l的參數(shù)方程為: (t為參數(shù)) .
(Ⅰ)寫出圓C和直線l的普通方程;
(Ⅱ)點P為圓C上動點,求點P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856299)已知雙曲線 (a>0,b>0)的左、右焦點分別是F1,F2,點P是其上一點,雙曲線的離心率是2,若△F1PF2是直角三角形且面積為3,則雙曲線的實軸長為( )
A. 2 B. C. 2或 D. 1或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com