精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在棱長為2的正方體,分別在棱,滿足,.

(1)試確定兩點的位置.

(2)求二面角大小的余弦值.

【答案】1分別為中點;(2

【解析】

試題(1)以A為原點建立空間直角坐標系,設,則P、Q兩點坐標可用表示,再根據已知,解方程即得值,從而確定、兩點的位置;(2)本題需要找到平面APQ和平面PQC1的法向量,因為平面APQ的法向量為,所以只需找到平面PQC1的法向量。設平面PQC1的法向量為,根據即可找到平面PQC1的法向量,再求出兩個向量之間的余弦值即得.

試題解析:(1)以、為正交基底建立空間直角坐標系

,,,

,,,解得

∴PC=1,CQ=1,即分別為中點

2)設平面的法向量為,,又,

,令,則,

為面的一個法向量,,而二面角為鈍角,故余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知菱形與直角梯形所在的平面互相垂直,其中,,,的中點

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設為線段上一點,,若直線與平面所成角的正弦值為,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)若,求函數的單調區(qū)間;

2)若關于的不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在棱長為2的正方體,分別在棱,滿足,.

(1)試確定兩點的位置.

(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點在平行于軸的直線上,且軸的交點為,動點滿足平行于軸,且.

1)求出點的軌跡方程.

2)設點,求的最小值,并寫出此時點的坐標.

3)過點的直線與點的軌跡交于.兩點,求證.兩點的橫坐標乘積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C過點 ,兩個焦點

(1)求橢圓C的標準方程;

(2)設直線l交橢圓C于A,B兩點,且|AB|=6,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線.

(1)若直線經過拋物線的焦點,求拋物線的準線方程;

(2)若斜率為-1的直線經過拋物線的焦點,且與拋物線交于,兩點,當時,求拋物線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為,過點的直線與圓交于兩點,

1)若,求直線的方程;

2)若直線軸交于點,設,,R,求的值.

查看答案和解析>>

同步練習冊答案