(2013•內江一模)設f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x-2)=f(x+2)且當x∈[-2,0]時,f(x)=(
1
2
x-1,若在區(qū)間(-2,6]內關于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是
34
,2)
34
,2)
分析:由已知中可以得到函數(shù)f(x)是一個周期函數(shù),且周期為4,將方程f(x)-logax+2=0恰有3個不同的實數(shù)解,轉化為
函數(shù)f(x)的與函數(shù)y=-logax+2的圖象恰有3個不同的交點,數(shù)形結合即可得到實數(shù)a的取值范圍.
解答:解:∵對于任意的x∈R,都有f(x-2)=f(2+x),∴函數(shù)f(x)是一個周期函數(shù),且T=4.
又∵當x∈[-2,0]時,f(x)=(
1
2
x-1,且函數(shù)f(x)是定義在R上的偶函數(shù),
若在區(qū)間(-2,6]內關于x的方程f(x)-loga(x+2)=0恰有3個不同的實數(shù)解,
則函數(shù)y=f(x)與y=loga(x+2)在區(qū)間(-2,6]上有三個不同的交點,如下圖所示:

又f(-2)=f(2)=3,則有 loga4<3,且loga8>3,解得:
34
<a<2,
故答案為 (
34
,2).
點評:本題考查的知識點是根的存在性及根的個數(shù)判斷,指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質,其中根據(jù)方程的解與函數(shù)的零點之間的關系,將方程根的問題轉化為函數(shù)零點問題,是解答本題的關鍵,體現(xiàn)了轉化和數(shù)形結合的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•內江一模)某單位有7個連在一起的車位,現(xiàn)有3輛不同型號的車需停放,如果要求剩余的4個車位連在一起,則不同的停放方法的種數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江一模)如圖莖葉圖表示的是甲,乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損,則甲的平均成績超過乙的平均成績的概率為
4
5
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江一模)武漢市為增強市民交通安全意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組
[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,應從第3,4,5組各抽取多少名志愿者?
(3)在(2)的條件下,該市決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江一模)對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數(shù)f(x)=
x2+a
bx-c
有且僅有兩個不動點0、2.
(1)求b,c滿足的關系式;
(2)若c=2時,相鄰兩項和不為零的數(shù)列{an}滿足4Snf(
1
an
)=1
(Sn是數(shù)列{an}的前n項和),求證:-
1
an+1
<ln
n+1
n
<-
1
an

查看答案和解析>>

同步練習冊答案