【題目】已知二次函數(shù)(,為常數(shù),且)滿足條件:,且方程有兩相等實根.
(1)求的解析式;
(2)設(shè)命題 “函數(shù)在上有零點”,命題 “函數(shù)在上單調(diào)遞增”;若命題“”為真命題,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)方程有兩相等實根得到,根據(jù)得到對稱軸,從而得到,得到的解析式;
(2)由,得到的范圍,從而得到的范圍,根據(jù)在上有零點,得到的范圍,若真,先得到分段函數(shù)的解析式,根據(jù)其在上單調(diào)遞增,得到的不等式組,得到的范圍,再根據(jù)“”為真命題,得到的取值范圍.
(1)∵方程有兩等根,即有兩等根,
,解得;
,得,
是函數(shù)圖象的對稱軸.
而此函數(shù)圖象的對稱軸是直線,∴,,
故
(2),由得
若真,即函數(shù)在上有零點,
則的圖像與有交點,
所以得到;
由,可得
;
若真,即在上單調(diào)遞增,
則,
;
若真,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間上是單調(diào)遞增,若,則的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若為的極值點,求實數(shù)的值;
(2)若在上是單調(diào)增函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(﹣1,1)上的奇函數(shù),且f(),
(1)確定函數(shù)的解析式;
(2)用定義法判斷函數(shù)的單調(diào)性;
(3)解不等式;f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若acos2+ccos2=b.
(1)求證:a,b,c成等差數(shù)列;
(2)若∠B=60°,b=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時,;
(3)證明:對任意給定的正數(shù),總存在,使得當(dāng)時,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為常數(shù)).
(1)討論的單調(diào)性;
(2)是的導(dǎo)函數(shù),若存在兩個極值點,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左右頂點,點為橢圓上一點,點關(guān)于軸的對稱點為,且.
(1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;
(2)在(1)的條件下,若過點的直線與橢圓相交于不同的兩點,設(shè)為橢圓上一點,且滿足(為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物探測器在水中逆流行進(jìn)時,所消耗的能量為E=cvnT,其中v為行進(jìn)時相對于水的速度,T為行進(jìn)時的時間(單位:h),c為常數(shù),n為能量次級數(shù),如果水的速度為4km/h,該生物探測器在水中逆流行進(jìn)200km.
(1)求T關(guān)于v的函數(shù)關(guān)系式;
(2)①當(dāng)能量次級數(shù)為2時,求探測器消耗的最少能量;
②當(dāng)能量次級數(shù)為3時,試確定v的大小,使該探測器消耗的能量最少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com