已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為
α1
=
1
1
,屬于特征值1的一個(gè)特征向量
α2
=
3
-2

(Ⅰ)求矩陣A的逆矩陣;
(Ⅱ)計(jì)算A3
-1
4
的值.
分析:(Ⅰ)根據(jù)特征值的定義可知Aα=λα,利用待定系數(shù)法建立方程,求出A,即可求矩陣A的逆矩陣;
(Ⅱ)(Ⅱ)
-1
4
=2
1
1
-
3
-2
,即可計(jì)算A3
-1
4
的值.
解答:解:(Ⅰ)依題意,
c+d=6
3c-2d=-2
,∴
c=2
d=4
.A=
33
24
.…(2分)
所以A-1=
2
3
-
1
2
-
1
3
1
2
…(4分)
(Ⅱ)
-1
4
=2
1
1
-
3
-2
…(5分)
A3
-1
4
=2×63
1
1
-13
3
-2
=
429
434
…(7分)
點(diǎn)評:本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為
α1
=
1
1
,屬于特征值1的一個(gè)特征向量為
α2
=
3
-2
.求矩陣A的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為α1=
1
1
,屬于特征值1的一個(gè)特征向量為α2=
3
-2

(1)求矩陣A;
(2)判斷矩陣A是否可逆,若可逆求出其逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-2:矩陣與變換)
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為α1=
1
1
,屬于特征值1的一個(gè)特征向量為α2=
3
-2

①求矩陣A;②求直線y=x+2在矩陣A的作用下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南京模擬)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為α1=
1
1
,屬于特征值1的一個(gè)特征向量為α2=
3
-2
.求矩陣A,并寫出A的逆矩陣.

查看答案和解析>>

同步練習(xí)冊答案