【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來(lái)越受到廣大考生的青睞,下表是西南地區(qū)某大學(xué)近五年的錄取平均分與省一本線對(duì)比表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
省一本線 | 505 | 500 | 525 | 500 | 530 |
錄取平均分533 | 534 | 566 | 547 | 580 | |
錄取平均分與省一本線分差y | 28 | 34 | 41 | 47 | 50 |
(1)根據(jù)上表數(shù)據(jù)可知,y與t之間存在線性相關(guān)關(guān)系,求y關(guān)于t的線性回歸方程;
(2)據(jù)以往數(shù)據(jù)可知,該大學(xué)每年的錄取分?jǐn)?shù)X服從正態(tài)分布,其中為當(dāng)年該大學(xué)的錄取平均分,假設(shè)2019年該省一本線為520分,李華2019年高考考了569分,他很喜歡這所大學(xué),想第一志愿填報(bào),請(qǐng)利用概率與統(tǒng)計(jì)知識(shí),給李華一個(gè)合理的建議.(第一志愿錄取可能性低于,則建議謹(jǐn)慎報(bào)考)
參考公式:,.
參考數(shù)據(jù):,.
【答案】(1);(2)建議李華第一志愿謹(jǐn)慎報(bào)考該大學(xué).
【解析】
(1)由表中的數(shù)據(jù)代入公式,計(jì)算出和,即可得到關(guān)于 的線性回歸方程;
(2)結(jié)合(1)計(jì)算出2019年錄取平均分,再根據(jù)該大學(xué)每年的錄取分?jǐn)?shù)X服從正態(tài)分布,由正態(tài)分布的性質(zhì)可計(jì)算出李華被錄取的概率,由此得到結(jié)論。
(1)由題知:,
所以得:
故所求回歸方程為: ;
(2)由(1)知:當(dāng)時(shí),,故該大學(xué)2019年的錄取平均分為577.1分.
又因?yàn)?/span>
所以李華被錄取的概率:
故建議李華第一志愿謹(jǐn)慎報(bào)考該大學(xué).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】氣象部門提供了某地區(qū)今年六月分(30天)的日最高氣溫的統(tǒng)計(jì)表如下:
日最高氣溫t(單位:) | ||||
天數(shù) | 6 | 12 |
由于工作疏忽,統(tǒng)計(jì)表被墨水污染,和數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于的頻率為0.9.
(1)若把頻率看作概率,求,的值;
(2)把日最高氣溫高干稱為本地區(qū)的“高溫天氣”,根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此推測(cè)是否有95%的把握認(rèn)為本地區(qū)“高溫天氣”與西瓜“旺銷”有關(guān)?說(shuō)明理由.
高溫天氣 | 非高溫天氣 | 合計(jì) | |
旺銷 | 1 | ||
不旺銷 | 6 | ||
合計(jì) |
附
P(K2≥R) | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的頂點(diǎn)坐標(biāo)分別是A(7,﹣3),B(2,﹣8),C(5,1),
(1)求AB垂直平分線的方程(化為一般式);
(2)求△ABC外接圓的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)設(shè)數(shù)列{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣a2=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為萬(wàn)元,產(chǎn)品價(jià)格隨著產(chǎn)量變化而有所變化,經(jīng)過(guò)段時(shí)間的產(chǎn)銷, 得到了的一組統(tǒng)計(jì)數(shù)據(jù)如下表:
日產(chǎn)量 | 1 | 2 | 3 | 4 | 5 |
日銷售量 | 5 | 12 | 16 | 19 | 21 |
(1)請(qǐng)判斷與中,哪個(gè)模型更適合到畫之間的關(guān)系?可從函數(shù)增長(zhǎng)趨勢(shì)方面給出簡(jiǎn)單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并估計(jì)當(dāng)日產(chǎn)量時(shí),日銷售額是多少?
參考數(shù)據(jù):,
線性回歸方程中,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,為CD的中點(diǎn),將沿AE折起到的位置,使得平面平面.
(1)證明:平面平面;
(2)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+a)(a>0且a≠1)的圖象過(guò)點(diǎn)(﹣1,0),g(x)=f(x)+f(﹣x).
(Ⅰ)求函數(shù)g(x)的定義域;
(Ⅱ)寫出函數(shù)g(x)的單調(diào)區(qū)間,并求g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水量的標(biāo)準(zhǔn),通過(guò)抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問(wèn)題:
分組 | 頻數(shù) | 頻率 |
[0,1) | 10 | 0.10 |
[1,2) | 0.20 | |
[2,3) | 30 | 0.30 |
[3,4) | 20 | |
[4,5) | 10 | 0.10 |
[5,6] | 10 | 0.10 |
合計(jì) | 100 | 1.00 |
(1)求右表中和的值;
(2)請(qǐng)將頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計(jì)該市每位居民月均用水量的眾數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,常數(shù)).
(1)當(dāng)時(shí),解不等式;
(2)當(dāng)時(shí),判斷并用定義法證明函數(shù)在的單調(diào)性;
(3)討論函數(shù)的奇偶性,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com